in

Reduced net methane emissions due to microbial methane oxidation in a warmer Arctic

  • 1.

    McGuire, A. D. et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl Acad. Sci. USA 115, 3882–3887 (2018).

  • 2.

    Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374 (2013).

  • 3.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

  • 4.

    Juncher Jørgensen, C., Lund Johansen, K. M., Westergaard-Nielsen, A. & Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 8, 20–23 (2015).

  • 5.

    Lau, M. C. Y. et al. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 9, 1880–1891 (2015).

  • 6.

    D’Imperio, L., Nielsen, C. S., Westergaard-Nielsen, A., Michelsen, A. & Elberling, B. Methane oxidation in contrasting soil types: responses to experimental warming with implication for landscape-integrated CH4 budget. Glob. Chang. Biol. 23, 966–976 (2017).

    • Article
    • Google Scholar
  • 7.

    Emmerton, C. A. et al. The net exchange of methane with high Arctic landscapes during the summer growing season. Biogeosciences 11, 3095–3106 (2014).

  • 8.

    Oh, Y. et al. A scalable model for methane consumption in arctic mineral soils. Geophys. Res. Lett. 43, 5143–5150 (2016).

  • 9.

    Zhuang, Q. et al. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochem. Cy. 18, GB3010 (2004).

  • 10.

    Zhuang, Q. et al. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition. Global Biogeochem. Cy. 27, 650–663 (2013).

  • 11.

    Bruhwiler, L. et al. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys. 14, 8269–8293 (2014).

  • 12.

    Saunois, M. et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 8, 697–751 (2016).

    • Article
    • Google Scholar
  • 13.

    Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S. & Frankenberg, C. Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data. Science 327, 322–325 (2010).

  • 14.

    Bohn, T. J. et al. WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences 12, 3321–3349 (2015).

    • Article
    • Google Scholar
  • 15.

    Miller, S. M. et al. A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations. Global Biogeochem. Cy. 30, 1441–1453 (2016).

  • 16.

    Hugelius, G. et al. A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst. Sci. Data 5, 393–402 (2013).

    • Article
    • Google Scholar
  • 17.

    Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011).

    • Article
    • Google Scholar
  • 18.

    Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. 10, 094011 (2015).

  • 19.

    Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Change 4, 903–906 (2014).

  • 20.

    Trimmer, M. et al. Riverbed methanotrophy sustained by high carbon conversion efficiency. ISME J. 9, 2304–2314 (2015).

  • 21.

    Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

  • 22.

    Christiansen, J. R. et al. Methane fluxes and the functional groups of methanotrophs and methanogens in a young Arctic landscape on Disko Island, West Greenland. Biogeochemistry 122, 15–33 (2015).

  • 23.

    Baani, M. & Liesack, W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc. Natl Acad. Sci. USA 105, 10203–10208 (2008).

  • 24.

    Tveit, A. T. et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc. Natl Acad. Sci. USA 116, 8515–8524 (2019).

  • 25.

    Segers, R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41, 23–51 (1998).

  • 26.

    Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Change 3, 909–912 (2013).

  • 27.

    Von Stockar, U. & Liu, J. S. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochim. Biophys. Acta Bioenerg. 1412, 191–211 (1999).

    • Article
    • Google Scholar
  • 28.

    Tijhuis, L., Van Loosdrecht, M. C. M. & Heijnen, J. J. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol. Bioeng. 42, 509–519 (1993).

  • 29.

    Knoblauch, C., Spott, O., Evgrafova, S., Kutzbach, L. & Pfeiffer, E. Regulation of methane production, oxidation, and emission by vascular plants and bryophytes in ponds of the northeast Siberian polygonal tundra. J. Geophys. Res. Biogeosci. 120, 2525–2541 (2015).

  • 30.

    Throckmorton, H. M. et al. Active layer hydrology in an arctic tundra ecosystem: quantifying water sources and cycling using water stable isotopes. Hydrol. Process. 30, 4972–4986 (2016).

    • Article
    • Google Scholar
  • 31.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    • Article
    • Google Scholar
  • 32.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

  • 33.

    Matthews, Elaine & Fung, I. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem. Cy. 1, 61–86 (1987).

  • 34.

    Poulter, B. et al. Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environ. Res. Lett. 12, 094013 (2017).

  • 35.

    Lawrence, D. et al. Technical Description of Version 5.0 of the Community Land Model (CLM) 4245–4287 (The National Center for Atmospheric Research, 2018).

  • 36.

    Sepulveda-Jauregui, A., Walter Anthony, K. M., Martinez-Cruz, K., Greene, S. & Thalasso, F. Methane and carbon dioxide emissions from 40 lakes along a north-south latitudinal transect in Alaska. Biogeosciences 12, 3197–3223 (2015).

  • 37.

    McCalley, C. K. et al. Methane dynamics regulated by microbial community response to permafrost thaw. Nature 514, 478–481 (2014).

  • 38.

    Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

  • 39.

    Nauta, A. L. et al. Permafrost collapse after shrub removal shifts tundra ecosystem to a methane source. Nat. Clim. Change 5, 67–70 (2015).

  • 40.

    Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

  • 41.

    Pedersen, E. P., Michelsen, A. & Elberling, B. In situ CH4 oxidation inhibition and 13CH4 labeling reveal methane oxidation and emission patterns in a subarctic heath ecosystem. Biogeochemistry 138, 197–213 (2018).

  • 42.

    Zhuang, Q. et al. Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska. J. Geophys. Res. D 108, 8147 (2003).

  • 43.

    Walter, B. P. & Heimann, M. A process‐based, climate‐sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Global Biogeochem. Cy. 14, 745–765 (2000).

  • 44.

    Lau, M. C. Y. et al. An oligotrophic deep-subsurface community dependent on syntrophy is dominated by sulfur-driven autotrophic denitrifiers. Proc. Natl Acad. Sci. USA 113, E7927–E7936 (2016).

  • 45.

    Stackhouse, B. T. et al. Effects of simulated spring thaw of permafrost from mineral cryosol on CO2 emissions and atmospheric CH4 uptake. J. Geophys. Res. Biogeosciences 120, 1764–1784 (2015).

  • 46.

    Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich, R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6, 579–591 (2008).

  • 47.

    Gottschalk, G. Bacterial Metabolism (Springer Science & Business Media, 2012).

  • 48.

    Von Stockar, U., Maskow, T., Liu, J., Marison, I. W. & Patiño, R. Thermodynamics of microbial growth and metabolism: an analysis of the current situation. J. Biotechnol. 121, 517–533 (2006).

  • 49.

    Stackhouse, B. et al. Atmospheric CH4 oxidation by Arctic permafrost and mineral cryosols as a function of water saturation and temperature. Geobiology 15, 94–111 (2017).

  • 50.

    Conrad, R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ. Microbiol. Rep. 1, 285–292 (2009).

  • 51.

    Sellers, P. J. et al. BOREAS in 1997: experiment overview, scientific results, and future directions. J. Geophys. Res. Atmos. 102, 28731–28769 (1997).

    • Article
    • Google Scholar
  • 52.

    Harazono, Y. et al. Temporal and spatial differences of methane flux at arctic tundra in Alaska. Mem. Natl Inst. Polar Res. 59, 79–95 (2006).

    • CAS
    • Google Scholar
  • 53.

    Dinsmore, K. J. et al. Growing season CH4 and N2O fluxes from a subarctic landscape in northern Finland; from chamber to landscape scale. Biogeosciences 14, 799–815 (2017).

  • 54.

    Duan, Q. Y., Gupta, V. K. & Sorooshian, S. Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 76, 501–521 (1993).

    • Article
    • Google Scholar
  • 55.

    Melillo, J. M. et al. Global climate change and terrestrial net primary production. Nature 363, 234–240 (1993).

    • Article
    • Google Scholar
  • 56.

    Global Soil Data Task (IGBP-DIS, ISO-image of CD). (International Geosphere-Biosphere Program, PANGAEA, 2000); https://doi.org/10.1594/PANGAEA.869912

  • 57.

    Myneni, R. B. et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214–231 (2002).

    • Article
    • Google Scholar
  • 58.

    Peters, W. et al. An ensemble data assimilation system to estimate CO2 surface fluxes from atmospheric trace gas observations. J. Geophys. Res. Atmos. 110, D24304 (2005).

  • 59.

    Krol, M. et al. The two-way nested global chemistry-transport zoom model TM5: algorithm and applications. Atmos. Chem. Phys. 5, 417–432 (2005).

  • 60.

    Seinfeld, J. H., Pandis, S. N. & Noone, K. Atmospheric chemistry and physics: from air pollution to climate change. Phys. Today 51, 88 (1998).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Targeted assemblies of cas1 suggest CRISPR-Cas’s response to soil warming

    Discerning the texture of urban resilience