in

Rebuilding marine life

  • 1.

    OECD. The Ocean Economy in 2030 (OECD Publishing, 2016).

  • 2.

    Duarte, C. M. et al. Will the oceans help feed humanity? Bioscience 59, 967–976 (2009).

    • Google Scholar
  • 3.

    Roberts, C. M. et al. Marine reserves can mitigate and promote adaptation to climate change. Proc. Natl Acad. Sci. USA 114, 6167–6175 (2017).

    • Google Scholar
  • 4.

    Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).

    • Google Scholar
  • 5.

    Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).

    • Google Scholar
  • 6.

    Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009).

    • Google Scholar
  • 7.

    McCauley, D. J. et al. Marine defaunation: animal loss in the global ocean. Science 347, 1255641 (2015). This paper reviews the historical hunting and associated loss of animals in the ocean and examines current threats that may result in future losses.

    • Google Scholar
  • 8.

    IPBES. IPBES Global Assessment Summary for Policymakers. https://www.ipbes.net/news/ipbes-global-assessment-summary-policymakers-pdf (2019).

  • 9.

    Wassmann, P. et al. Footprints of climate change in the Arctic marine ecosystem. Glob. Change Biol. 17, 1235–1249 (2011).

    • Google Scholar
  • 10.

    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    • Google Scholar
  • 11.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    • Google Scholar
  • 12.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018). This study provides a global assessment of the extent of coral bleaching, with emphasis on the 2015–2016 global coral-reef bleaching events.

    • Google Scholar
  • 13.

    Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 175–311 (WMO, 2018). This IPCC report suggests that, in light of recent coral losses, the research community may have underestimated the risks of climate change for coral reefs, and concludes that even achieving the ambitious goal of 1.5 °C of global warming under the Paris Agreement could result in the loss of 70–90% of reef-building corals compared to that at the time the assessment was made.

  • 14.

    Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl Acad. Sci. USA 116, 12907–12912 (2019).

    • Google Scholar
  • 15.

    Lubchenco, J. & Grorud-Colvert, K. Making waves: the science and politics of ocean protection. Science 350, 382–383 (2015).

    • Google Scholar
  • 16.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).

    • Google Scholar
  • 17.

    Silver, J. J. et al. Blue economy and competing discourses in international oceans governance. J. Environ. Dev. 24, 135–160 (2015).

    • Google Scholar
  • 18.

    Roberts, C. M. The Unnatural History of the Sea (Island Press, 2007). This book reviews how human pressures drove changes in marine ecosystems and to marine life, providing evidence that the observed impacts on marine ecosystems are not a recent phenomenon.

  • 19.

    Worm, B. Marine conservation: how to heal an ocean. Nature 543, 630–631 (2017).

    • Google Scholar
  • 20.

    Jones, H. P. et al. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. Lond. B 285, 20172577 (2018).

    • Google Scholar
  • 21.

    FAO. The State of World Fisheries and Aquaculture: Meeting the Sustainable Development Goals (Food and Agriculture Organization of the United Nations, 2018).

  • 22.

    Doney, S. C. The growing human footprint on coastal and open-ocean biogeochemistry. Science 328, 1512–1516 (2010).

    • Google Scholar
  • 23.

    Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).

    • Google Scholar
  • 24.

    IUCN. The IUCN Red List of Threatened Species. https://www.iucnredlist.org/ (accessed 1 April 2019).

  • 25.

    Dulvy, N. K., Pinnegar, J. K. & Reynolds, J. D. in Holocene Extinctions (ed. Turvey, S. T.) 129–150 (Oxford Univ. Press, 2009).

  • 26.

    Jones, K. R. et al. The location and protection status of Earth’s diminishing marine wilderness. Curr. Biol. 28, 2506–2512 (2018).

    • Google Scholar
  • 27.

    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nat. Commun. 5, 3271 (2014). This study reports an estimate of mesopelagic fish abundance, which exceeds the biomass of all other fish stocks by about 30 times and remains unexploited by fisheries.

    • Google Scholar
  • 28.

    Beare, D., Hölker, F., Engelhard, G. H., McKenzie, E. & Reid, D. G. An unintended experiment in fisheries science: a marine area protected by war results in Mexican waves in fish numbers-at-age. Naturwissenschaften 97, 797–808 (2010).

    • Google Scholar
  • 29.

    Richards, Z. T., Beger, M., Pinca, S. & Wallace, C. C. Bikini Atoll coral biodiversity resilience five decades after nuclear testing. Mar. Pollut. Bull. 56, 503–515 (2008).

    • Google Scholar
  • 30.

    Oguz, T. & Velikova, V. Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. Mar. Ecol. Prog. Ser. 405, 231–242 (2010).

    • Google Scholar
  • 31.

    Mozetič, P. et al. Recent trends towards oligotrophication of the northern Adriatic: evidence from chlorophyll a time series. Estuaries Coast. 33, 362–375 (2010).

    • Google Scholar
  • 32.

    Jackson, J. B. C. Colloquium paper: ecological extinction and evolution in the brave new ocean. Proc. Natl Acad. Sci. USA 105, 11458–11465 (2008).

    • Google Scholar
  • 33.

    Duarte, C. M. Global change and the future ocean: a grand challenge for marine sciences. Front. Mar. Sci. 1, 63 (2014).

    • Google Scholar
  • 34.

    Magera, A. M., Mills Flemming, J. E., Kaschner, K., Christensen, L. B. & Lotze, H. K. Recovery trends in marine mammal populations. PLoS ONE 8, e77908 (2013).

    • Google Scholar
  • 35.

    Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011). This paper provides a discussion of the recovery potential and timescales for marine animal populations and ecosystems.

    • Google Scholar
  • 36.

    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).

    • Google Scholar
  • 37.

    Castilla, J. C. & Defeo, O. Latin American benthic shell fisheries: emphasis on co-management and experimental practices. Rev. Fish Biol. Fish. 11, 1–30 (2001).

    • Google Scholar
  • 38.

    Birkenbach, A. M., Kaczan, D. J. & Smith, M. D. Catch shares slow the race to fish. Nature 544, 223–226 (2017).

    • Google Scholar
  • 39.

    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).

    • Google Scholar
  • 40.

    Duarte, C. M. et al. The role of coastal plant communities for climate change mitigation and adaption. Nat. Clim. Change 3, 961–968 (2013). This review summarizes how Blue Carbon strategies, based on the conservation and restoration of vegetated coastal habitats, can help to mitigate climate change and can provide coastal protection, thereby helping coastal communities to adapt to climate change.

    • Google Scholar
  • 41.

    Reusch, T.B. et al. The Baltic Sea as a time machine for the future coastal ocean. Sci. Adv. 4, eaar8195 (2018). This review provides a narrative of the difficulties and successes in achieving environmental improvements and recovery of the Baltic Sea, with an emphasis on lessons learned to guide future efforts elsewhere.

    • Google Scholar
  • 42.

    Boesch, D. F. Barriers and bridges in abating coastal eutrophication. Front. Mar. Sci. 6, 123 (2019).

    • Google Scholar
  • 43.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    • Google Scholar
  • 44.

    Roberts, C. M., Hawkins, J. P. & Gell, F. R. The role of marine reserves in achieving sustainable fisheries. Phil. Trans. R. Soc. B 360, 123–132 (2005).

    • Google Scholar
  • 45.

    Das, S. & Vincent, J. R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl Acad. Sci. USA 106, 7357–7360 (2009).

    • Google Scholar
  • 46.

    Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14, 20180251 (2018).

    • Google Scholar
  • 47.

    Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).

    • Google Scholar
  • 48.

    Roman, J., Dunphy-Daly, M. M., Johnston, D. W. & Read, A. J. Lifting baselines to address the consequences of conservation success. Trends Ecol. Evol. 30, 299–302 (2015).

    • Google Scholar
  • 49.

    Bejder, M. et al. Embracing conservation success of recovering humpback whale populations: evaluating the case for downlisting their conservation status in Australia. Mar. Policy 66, 137–141 (2016).

    • Google Scholar
  • 50.

    Lowry, M. S. et al. Abundance, distribution, and population growth of the northern elephant seal (Mirounga angustirostris) in the United States from 1991 to 2010. Aquat. Mamm. 40, 20–31 (2014). This paper provides a compelling overview of how hunting regulation and protection allowed the remarkable comeback of the northern elephant seal in the Pacific coast of the United States.

    • Google Scholar
  • 51.

    Fisheries and Oceans Canada. Stock Assessment of Canadian Grey Seals (Halichoerus grypus). Canadian Science Advisory Secretariat Research Document 2014/010 (Fisheries and Oceans Canada, 2014).

  • 52.

    Mazaris, A. D., Schofield, G., Gkazinou, C., Almpanidou, V. & Hays, G. C. Global sea turtle conservation successes. Sci. Adv. 3, e1600730 (2017).

    • Google Scholar
  • 53.

    Ricard, D. et al. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish. 13, 380–398 (2012).

    • Google Scholar
  • 54.

    Hutchings, J. A. & Reynolds, J. D. Marine fish population collapses: consequences for recovery and extinction risk. Bioscience 54, 297–309 (2004).

    • Google Scholar
  • 55.

    Rigét, F. et al. Temporal trends of persistent organic pollutants in Arctic marine and freshwater biota. Sci. Total Environ. 649, 99–110 (2019).

    • Google Scholar
  • 56.

    Pinedo-González, A. J. et al. Concentration and isotopic composition of dissolved Pb in surface waters of the modern global ocean. Geochim. Cosmochim. Acta 235, 41–54 (2018).

    • Google Scholar
  • 57.

    Schøyen, M. et al. Levels and trends of tributyltin (TBT) and imposex in dogwhelk (Nucella lapillus) along the Norwegian coastline from 1991 to 2017. Mar. Environ. Res. 144, 1–8 (2019).

    • Google Scholar
  • 58.

    IOTOPF. Oil Tanker Spill Statistics 2016 http://www.itopf.org/ (2016).

  • 59.

    Duarte, C. M. et al. Return to Neverland: shifting baselines affect eutrophication restoration targets. Estuaries Coast. 32, 29–36 (2009).

    • Google Scholar
  • 60.

    Lefcheck, J. S. et al. Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proc. Natl Acad. Sci. USA 115, 3658–3662 (2018).

    • Google Scholar
  • 61.

    Tomasko, D. et al. Widespread recovery of seagrass coverage in Southwest Florida (USA): temporal and spatial trends and management actions responsible for success. Mar. Pollut. Bull. 135, 1128–1137 (2018).

    • Google Scholar
  • 62.

    de los Santos, C.B. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019). This study reports how decades of efforts to reduce nutrient inputs, improve coastal water quality and conserve and restore seagrass meadows has led to a remarkable trend reversal from sustained losses of seagrass across Europe throughout the twentieth century to a substantial increase between 2000 and 2010.

    • Google Scholar
  • 63.

    Yoshida, G. et al. in Blue Carbon in Shallow Coastal Ecosystems (eds Kuwae, T. & Hori, M.) (Springer Nature, 2019).

  • 64.

    Arnaud-Haond, S. et al. Genetic recolonization of mangrove: genetic diversity still increasing in the Mekong Delta 30 years after Agent Orange. Mar. Ecol. Prog. Ser. 390, 129–135 (2009).

    • Google Scholar
  • 65.

    Nam, V. N., Sasmito, S. D., Murdiyarso, D., Purbopuspito, J. & MacKenzie, R. A. Carbon stocks in artificially and naturally regenerated mangrove ecosystems in the Mekong Delta. Wetl. Ecol. Manag. 24, 231–244 (2016).

    • Google Scholar
  • 66.

    Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).

    • Google Scholar
  • 67.

    Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738 (2016).

    • Google Scholar
  • 68.

    López-Angarita, J. et al. Land use patterns and influences of protected areas on mangroves of the eastern tropical Pacific. Biol. Conserv. 227, 82–91 (2018).

    • Google Scholar
  • 69.

    Almahasheer, H. et al. Decadal stability of Red Sea mangroves. Estuar. Coast. Shelf Sci. 169, 164–172 (2016).

    • Google Scholar
  • 70.

    Almahasheer, H. Spatial coverage of mangrove communities in the Arabian Gulf. Environ. Monit. Assess. 190, 85 (2018).

    • Google Scholar
  • 71.

    Chen, L. Z. et al. Recent progresses in mangrove conservation, restoration and research in China. J. Plant Ecol. 2, 45–54 (2009).

    • Google Scholar
  • 72.

    Piacenza, S. E. et al. Trends and variability in demographic indicators of a recovering population of green sea turtles Chelonia mydas. Endanger. Species Res. 31, 103–117 (2016).

    • Google Scholar
  • 73.

    Thorson, J. T., Cope, J. M., Branch, T. A. & Jensen, O. P. Spawning biomass reference points for exploited marine fishes, incorporating taxonomic and body size information. Can. J. Fish. Aquat. Sci. 69, 1556–1568 (2012).

    • Google Scholar
  • 74.

    McClatchie, S. et al. Collapse and recovery of forage fish populations prior to commercial exploitation. Geophys. Res. Lett. 44, 1877–1885 (2017).

    • Google Scholar
  • 75.

    Rosenberg, A. A., Swasey, J. H. & Bowman, M. Rebuilding US fisheries: progress and problems. Front. Ecol. Environ. 4, 303–308 (2006).

    • Google Scholar
  • 76.

    Neubauer, P., Jensen, O. P., Hutchings, J. A. & Baum, J. K. Resilience and recovery of overexploited marine populations. Science 340, 347–349 (2013).

    • Google Scholar
  • 77.

    Safina, C., Rosenberg, A. A., Myers, R. A., Quinn, T. J. II & Collie, J. S. U.S. ocean fish recovery: staying the course. Science 309, 707–708 (2005).

    • Google Scholar
  • 78.

    MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

    • Google Scholar
  • 79.

    Sumaila, U. R. et al. Benefits of rebuilding global marine fisheries outweigh costs. PLoS ONE 7, e40542 (2012).

    • Google Scholar
  • 80.

    Bersoza Hernández, A. et al. Restoring the eastern oyster: how much progress has been made in 53 years? Front. Ecol. Environ. 16, 463–471 (2018).

    • Google Scholar
  • 81.

    Graham, M. H. et al. Population dynamics of giant kelp Macrocystis pyrifera along a wave exposure gradient. Mar. Ecol. Prog. Ser. 148, 269–279 (1997).

    • Google Scholar
  • 82.

    Dayton, P. K., Tegner, M. J., Parnell, P. E. & Edwards, P. B. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecol. Monogr. 62, 421–445 (1992).

    • Google Scholar
  • 83.

    Williams, P. B. & Orr, M. K. Physical evolution of restored breached levee salt marshes in the San Francisco Bay estuary. Restor. Ecol. 10, 527–542 (2002).

    • Google Scholar
  • 84.

    Alongi, D. M. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76, 1–13 (2008).

    • Google Scholar
  • 85.

    Duarte, C. M. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41, 87–112 (1995).

    • Google Scholar
  • 86.

    Rooper, C. N. et al. Modeling the impacts of bottom trawling and the subsequent recovery rates of sponges and corals in the Aleutian Islands, Alaska. Cont. Shelf Res. 31, 1827–1834 (2011).

    • Google Scholar
  • 87.

    Girard, F., Shea, K. & Fisher, C. R. Projecting the recovery of a long-lived deep-sea coral species after the Deepwater Horizon oil spill using state-structured models. J. Appl. Ecol. 55, 1812–1822 (2018).

    • Google Scholar
  • 88.

    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).

    • Google Scholar
  • 89.

    Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).

    • Google Scholar
  • 90.

    Thurstan, R. H. & Roberts, C. M. Ecological meltdown in the Firth of Clyde, Scotland: two centuries of change in a coastal marine ecosystem. PLoS ONE 5, e11767 (2010).

    • Google Scholar
  • 91.

    Britten, G. L. et al. Extended fisheries recovery timelines in a changing environment. Nat. Commun. 8, 15325 (2017).

    • Google Scholar
  • 92.

    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).

    • Google Scholar
  • 93.

    WWF. Living Blue Planet Report (WWF, 2015).

  • 94.

    Thurstan, R. H., Brockington, S. & Roberts, C. M. The effects of 118 years of industrial fishing on UK bottom trawl fisheries. Nat. Commun. 1, 15 (2010).

    • Google Scholar
  • 95.

    IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. (eds. Pörtner, H.-O. et al.) (IPCC, 2019). This IPCC Special Report contains an updated assessment of the impacts—both realized and projected—of climate change on the oceans as well as projections on sea-level rise and its associated impacts.

  • 96.

    Jepson, P. Recoverable Earth: a twenty-first century environmental narrative. Ambio 48, 123–130 (2019).

    • Google Scholar
  • 97.

    Molloy, P. P., McLean, I. B. & Côté, I. M. Effects of marine reserve age on fish populations: a global meta-analysis. J. Appl. Ecol. 46, 743–751 (2009).

    • Google Scholar
  • 98.

    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).

    • Google Scholar
  • 99.

    Sala, E. et al. Assessing real progress towards effective ocean protection. Mar. Policy 91, 11–13 (2018).

    • Google Scholar
  • 100.

    Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).

    • Google Scholar
  • 101.

    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).

    • Google Scholar
  • 102.

    O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).

    • Google Scholar
  • 103.

    O’Hara, C. C., Villaseñor-Derbez, J. C., Ralph, G. M. & Halpern, B. S. Mapping status and conservation of global at-risk marine biodiversity. Conserv. Lett. 12, e12651 (2019).

    • Google Scholar
  • 104.

    Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).

    • Google Scholar
  • 105.

    Barbier, E. B. Policy: Hurricane Katrina’s lessons for the world. Nature 524, 285–287 (2015).

    • Google Scholar
  • 106.

    Temmerman, S. et al. Ecosystem-based coastal defence in the face of global change. Nature 504, 79–83 (2013).

    • Google Scholar
  • 107.

    van Katwijk, M. M. et al. Global review of seagrass restoration: the importance of large-scale planting. J. Appl. Ecol. 53, 567–578 (2016).

    • Google Scholar
  • 108.

    Suggett, D. J. et al. Optimizing return-on-effort for coral nursery and outplanting practices to aid restoration of the Great Barrier Reef. Restor. Ecol. 27, 683–693 (2019).

    • Google Scholar
  • 109.

    Lewis, R. R. III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24, 403–418 (2005).

    • Google Scholar
  • 110.

    van Oppen, M. J., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    • Google Scholar
  • 111.

    National Academies of Sciences, Engineering, and Medicine. A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs https://doi.org/10.17226/25279 (National Academies Press, 2019).

  • 112.

    Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nat. Ecol. Evol. 3, 1135 (2019).

    • Google Scholar
  • 113.

    Duarte, C. M. & Krause-Jensen, D. Intervention options to accelerate ecosystem recovery from coastal eutrophication. Front. Mar. Sci. 5, 470 (2018).

    • Google Scholar
  • 114.

    Xiao, X. et al. Nutrient removal from Chinese coastal waters by large-scale seaweed aquaculture. Sci. Rep. 7, 46613 (2017).

    • Google Scholar
  • 115.

    Carstensen, J. & Duarte, C. M. Drivers of pH variability in coastal ecosystems. Environ. Sci. Technol. 53, 4020–4029 (2019).

    • Google Scholar
  • 116.

    Rydin, E., Kumblad, L., Wulff, F. & Larsson, P. Remediation of a eutrophic bay in the Baltic Sea. Environ. Sci. Technol. 51, 4559–4566 (2017).

    • Google Scholar
  • 117.

    Boesch, D. Deep-water drilling remains a risky business. Nature 484, 289 (2012).

    • Google Scholar
  • 118.

    Johannsdottir, L. & Cook, D. Systemic risk of maritime-related oil spills viewed from an Arctic and insurance perspective. Ocean Coast. Manage. 179, 104853 (2019).

    • Google Scholar
  • 119.

    Kunc, H. P., McLaughlin, K. E. & Schmidt, R. Aquatic noise pollution: implications for individuals, populations, and ecosystems. Proc. R. Soc. Lond. B 283, 20160839 (2016).

    • Google Scholar
  • 120.

    Worthington, T. & Spalding, M. Mangrove Restoration Potential: A global map highlighting a critical opportunity. https://doi.org/10.17863/CAM.39153 (2018).

  • 121.

    Kondolf, G. M., Rubin, Z. K. & Minear, J. T. Dams on the Mekong: cumulative sediment starvation. Water Resour. Res. 50, 5158–5169 (2014).

    • Google Scholar
  • 122.

    Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

    • Google Scholar
  • 123.

    Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005).

    • Google Scholar
  • 124.

    Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    • Google Scholar
  • 125.

    Tokarska, K. B. & Gillett, N. P. Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nat. Clim. Change 8, 296–299 (2018).

    • Google Scholar
  • 126.

    UNEP. Emissions Gap Report 2019. https://www.unenvironment.org/resources/emissions-gap-report-2019 (UNEP, 2019).

  • 127.

    Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Change 8, 499–503 (2018).

    • Google Scholar
  • 128.

    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).

    • Google Scholar
  • 129.

    Barbier, E. B., Burgess, J. C. & Dean, T. J. How to pay for saving biodiversity. Science 360, 486–488 (2018). This study provides estimates and funding mechanisms to pay for biodiversity conservation globally, including estimates of investment and benefits for conserving marine biodiversity.

    • Google Scholar
  • 130.

    Balmford, A., Gravestock, P., Hockley, N., McClean, C. J. & Roberts, C. M. The worldwide costs of marine protected areas. Proc. Natl Acad. Sci. USA 101, 9694–9697 (2004).

    • Google Scholar
  • 131.

    McCook, L. J. et al. Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves. Proc. Natl Acad. Sci. USA 107, 18278–18285 (2010).

    • Google Scholar
  • 132.

    Burgess, M. G. et al. Protecting marine mammals, turtles, and birds by rebuilding global fisheries. Science 359, 1255–1258 (2018).

    • Google Scholar
  • 133.

    Lubchenco, J. et al. The right incentives enable ocean sustainability successes and provide hope for the future. Proc. Natl Acad. Sci. USA 113, 14507–14514 (2016).

    • Google Scholar
  • 134.

    Cisneros-Montemayor, A. M., Pauly, D., Weatherdon, L. V. & Ota, Y. A global estimate of seafood consumption by coastal indigenous peoples. PLoS ONE 11, e0166681 (2016).

    • Google Scholar
  • 135.

    Arlinghaus, R. et al. Opinion: governing the recreational dimension of global fisheries. Proc. Natl Acad. Sci. USA 116, 5209–5213 (2019).

    • Google Scholar
  • 136.

    Bäckstrand, K. et al. Non-state actors in global climate governance: from Copenhagen to Paris and beyond. Env. Polit. 26, 561–579 (2017).

    • Google Scholar
  • 137.

    Hudson, A. Restoring and protecting the world’s large marine ecosystems: an engine for job creation and sustainable economic development. Environ. Dev. 22, 150–155 (2017).

    • Google Scholar
  • 138.

    Gelcich, S., Godoy, N., Prado, L. & Castilla, J. C. Add-on conservation benefits of marine territorial user rights fishery policies in central Chile. Ecol. Appl. 18, 273–281 (2008).

    • Google Scholar
  • 139.

    Johns, L. N. & Jacquet, J. Doom and gloom versus optimism: an assessment of ocean-related US science journalism (2001–2015). Glob. Environ. Change 50, 142–148 (2018).

    • Google Scholar
  • 140.

    Balmford, A. & Knowlton, N. Why Earth optimism? Science 356, 225 (2017).

    • Google Scholar
  • 141.

    Barbier, E. B. et al. Protect the deep sea. Nature 505, 475–477 (2014).

    • Google Scholar
  • 142.

    O’Leary, B. C. et al. The first network of marine protected areas (MPAs) in the high seas: the process, the challenges and where next. Mar. Policy 36, 598–605 (2012).

    • Google Scholar
  • 143.

    Rodríguez, J. P. et al. Environment: globalization of conservation: a view from the south. Science 317, 755–756 (2007).

    • Google Scholar
  • 144.

    Mogollón, J. M. et al. Assessing future reactive nitrogen inputs into global croplands based on the shared socioeconomic pathways. Environ. Res. Lett. 13, 044008 (2018).

    • Google Scholar

  • Source: Ecology - nature.com

    Author Correction: Simulation-based reconstruction of global bird migration over the past 50,000 years

    Functional identity enhances aboveground productivity of a coastal saline meadow mediated by Tamarix chinensis in Laizhou Bay, China