in

Behavioural plasticity is associated with reduced extinction risk in birds

  • 1.

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

  • 2.

    IUCN. The IUCN Red List of Threatened Species Version 2019-1. IUCN Red List of Threatened Species https://www.iucnredlist.org/en (2019).

  • 3.

    Bennett, P. M. & Owens, I. P. F. Variation in extinction risk among birds: chance or evolutionary predisposition? Proc. R. Soc. Lond. B 264, 401–408 (1997).

    • Article
    • Google Scholar
  • 4.

    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. R. Soc. Lond. B 267, 1947–1952 (2000).

  • 5.

    Reed, J. M. The role of behavior in recent avian extinctions and endangerments. Conserv. Biol. 13, 232–241 (1999).

    • Article
    • Google Scholar
  • 6.

    Sol, D. in Animal Innovation (eds Reader, S. M. & Laland, K. N.) Ch. 3 (Oxford Univ. Press, 2003).

  • 7.

    Sih, A. Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim. Behav. 85, 1077–1088 (2013).

    • Article
    • Google Scholar
  • 8.

    Maspons, J., Molowny-Horas, R. & Sol, D. Behaviour, life history and persistence in novel environments. Phil. Trans. R. Soc. B 374, 20180056 (2019).

    • Article
    • Google Scholar
  • 9.

    Barrett, B., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: does social learning help or hinder adaptive response to human-induced rapid environmental change?. Front. Ecol. Evol. 7, 183 (2019).

    • Article
    • Google Scholar
  • 10.

    Lefebvre, L., Reader, S. M. & Sol, D. Brains, innovations and evolution in birds and primates. Brain. Behav. Evol. 63, 233–246 (2004).

    • Article
    • Google Scholar
  • 11.

    Dukas, R. Evolutionary biology of insect learning. Annu. Rev. Entomol. 53, 145–160 (2008).

  • 12.

    Sol, D. Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biol. Lett. 5, 130–133 (2009).

    • Article
    • Google Scholar
  • 13.

    Ricklefs, R. E. The cognitive face of avian life histories. Wilson J. Ornithol. 116, 119–133 (2004).

    • Google Scholar
  • 14.

    Godfrey-Smith, P. in The Evolution of Intelligence (eds Sternberg, I. R. & Kaufman, J.) 233–249 (Lawrence Erlbaum Associates, 2002).

  • 15.

    Sayol, F. et al. Environmental variation and the evolution of large brains in birds. Nat. Commun. 7, 13971 (2016).

  • 16.

    Owens, I. P. & Bennett, P. M. Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proc. Natl Acad. Sci. USA 97, 12144–12148 (2000).

  • 17.

    Gonzalez-Voyer, A., González-Suárez, M., Vilà, C. & Revilla, E. Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution 70, 1364–1375 (2016).

    • Article
    • Google Scholar
  • 18.

    Fristoe, T. S., Iwaniuk, A. N. & Botero, C. A. Big brains stabilize populations and facilitate colonization of variable habitats in birds. Nat. Ecol. Evol. 1, 1706–1715 (2017).

    • Article
    • Google Scholar
  • 19.

    Lefebvre, L., Whittle, P., Lascaris, E. & Finkelstein, A. Feeding innovations and forebrain size in birds. Anim. Behav. 53, 549–560 (1997).

    • Article
    • Google Scholar
  • 20.

    Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. USA 99, 4436–4441 (2002).

  • 21.

    Sol, D., Sayol, F., Ducatez, S. & Lefebvre, L. The life-history basis of behavioural innovations. Phil. Trans. R. Soc. B 371, 20150187 (2016).

  • 22.

    Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P. & Lefebvre, L. Big brains, enhanced cognition, and response of birds to novel environments. Proc. Natl Acad. Sci. USA 102, 5460–5465 (2005).

  • 23.

    Hobbs, J. Use of tools by the White-winged chough. Emu 71, 84–85 (1971).

    • Article
    • Google Scholar
  • 24.

    Overington, S. E., Morand-Ferron, J., Boogert, N. J. & Lefebvre, L. Technical innovations drive the relationship between innovativeness and residual brain size in birds. Anim. Behav. 78, 1001–1010 (2009).

    • Article
    • Google Scholar
  • 25.

    Ducatez, S. & Shine, R. Drivers of extinction risk in terrestrial vertebrates. Conserv. Lett. 10, 186–194 (2017).

    • Article
    • Google Scholar
  • 26.

    Berkunsky, I. et al. Current threats faced by Neotropical parrot populations. Biol. Conserv. 214, 278–287 (2017).

    • Article
    • Google Scholar
  • 27.

    Tulloch, V. J. D., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fish. 19, 117–137 (2018).

    • Article
    • Google Scholar
  • 28.

    Cowlishaw, G. & Dunbar, R. Primate Conservation Biology (Univ. of Chicago Press, 2000).

  • 29.

    Nicolakakis, N., Sol, D. & Lefebvre, L. Behavioural flexibility predicts species richness in birds, but not extinction risk. Anim. Behav. 65, 445–452 (2003).

    • Article
    • Google Scholar
  • 30.

    Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M. & Brooks, T. M. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).

    • Article
    • Google Scholar
  • 31.

    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).

    • Article
    • Google Scholar
  • 32.

    Cooper, N., Bielby, J., Thomas, G. H. & Purvis, A. Macroecology and extinction risk correlates of frogs. Glob. Ecol. Biogeogr. 17, 211–221 (2008).

    • Article
    • Google Scholar
  • 33.

    Davidson, A. D., Hamilton, M. J., Boyer, A. G., Brown, J. H. & Ceballos, G. Multiple ecological pathways to extinction in mammals. Proc. Natl Acad. Sci. USA 106, 10702–10705 (2009).

    • Article
    • Google Scholar
  • 34.

    Siliceo, I. & Díaz, J. A. A comparative study of clutch size, range size, and the conservation status of island vs. mainland lacertid lizards. Biol. Conserv. 143, 2601–2608 (2010).

    • Article
    • Google Scholar
  • 35.

    Schaefer, H.-C., Jetz, W. & Böhning-Gaese, K. Impact of climate change on migratory birds: community reassembly versus adaptation. Glob. Ecol. Biogeogr. 17, 38–49 (2008).

    • Google Scholar
  • 36.

    Lee, T. M. & Jetz, W. Unravelling the structure of species extinction risk for predictive conservation science. Proc. R. Soc. Lond. B 278, 1329–1338 (2011).

    • Article
    • Google Scholar
  • 37.

    Overington, S. E., Griffin, A. S., Sol, D. & Lefebvre, L. Are innovative species ecological generalists? A test in North American birds. Behav. Ecol. 22, 1286–1293 (2011).

    • Article
    • Google Scholar
  • 38.

    Lefebvre, L., Juretic, N., Nicolakakis, N. & Timmermans, S. Is the link between forebrain size and feeding innovations caused by confounding variables? A study of Australian and North American birds. Anim. Cogn. 4, 91–97 (2001).

    • Article
    • Google Scholar
  • 39.

    Lefebvre, L. et al. Feeding innovations and forebrain size in Australasian birds. Behaviour 135, 1077–1097 (1998).

    • Article
    • Google Scholar
  • 40.

    Timmermans, S., Lefebvre, L., Boire, D. & Basu, P. Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain. Behav. Evol. 56, 196–203 (2000).

  • 41.

    de Oliveira Casadei, L. & Plácido Guimarães, J. Registros fotográficos da Garça-branca, Ardea alba, predando outras espécies de aves na cidade de Praia Grande/SP. Atual. Ornitológicas 196, 26 (2017).

    • Google Scholar
  • 42.

    Baglione, V. & Canestrari, D. Kleptoparasitism and temporal segregation of sympatric corvids foraging in a refuse dump. Auk 126, 566–578 (2009).

    • Article
    • Google Scholar
  • 43.

    Atkore, V. M. & Dasgupta, S. Himalayan Griffon Gyps himalayensis feeding on chir pine Pinus roxburghii needles. Indian Birds 2, 172 (2006).

    • Google Scholar
  • 44.

    Bondo, K. J. & Brigham, R. M. Plasticity by migrant yellow-rumped warblers: foraging indoors during unseasonable cold weather. Northwest. Nat. 97, 139–143 (2016).

    • Article
    • Google Scholar
  • 45.

    Lock, J. Behavioral exploitation of human maritime activities by the great cormorant Phalacrocorax carbo. Mar. Ornithol. 41, 79–81 (2013).

    • Google Scholar
  • 46.

    Ducatez, S., Clavel, J. & Lefebvre, L. Ecological generalism and behavioural innovation in birds: technical intelligence or the simple incorporation of new foods? J. Anim. Ecol. 84, 79–89 (2015).

    • Article
    • Google Scholar
  • 47.

    Navarrete, A. F., Reader, S. M., Street, S. E., Whalen, A. & Laland, K. N. The coevolution of innovation and technical intelligence in primates. Phil. Trans. R. Soc. B 371, 20150186 (2016).

    • Article
    • Google Scholar
  • 48.

    Arbilly, M. & Laland, K. N. The magnitude of innovation and its evolution in social animals. Proc. R. Soc. B 284, 20162385 (2017).

    • Article
    • Google Scholar
  • 49.

    Lefebvre, L. Taxonomic counts of cognition in the wild. Biol. Lett. 7, 631–633 (2011).

    • Article
    • Google Scholar
  • 50.

    Nicolakakis, N. & Lefebvre, L. Forebrain size and innovation rate in european birds: feeding, nesting and confounding variables. Behaviour 137, 1415–1429 (2000).

    • Article
    • Google Scholar
  • 51.

    Ducatez, S. & Lefebvre, L. Patterns of research effort in birds. PLoS ONE 9, e89955 (2014).

  • 52.

    Sol, D., Lefebvre, L. & Rodríguez-Teijeiro, J. D. Brain size, innovative propensity and migratory behaviour in temperate Palaearctic birds. Proc. R. Soc. B 272, 1433–1441 (2005).

    • Article
    • Google Scholar
  • 53.

    Data Zone (Birdlife International, 2019); http://datazone.birdlife.org/home

  • 54.

    Dunning, J. B. CRC Handbook of Avian Body Masses (CRC Press, 2007).

  • 55.

    del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & de Juana, E. Handbook of the Birds of the World Alive (Lynx Edicions, 2017); http://www.hbw.com

  • 56.

    Ducatez, S., Tingley, R. & Shine, R. Using species co-occurrence patterns to quantify relative habitat breadth in terrestrial vertebrates. Ecosphere 5, art152 (2014).

    • Article
    • Google Scholar
  • 57.

    Bennett, P. M. & Owens, I. P. F. Evolutionary Ecology of Birds: Life Histories, Mating Systems and Extinction (Oxford Univ. Press, 2002).

  • 58.

    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).

    • Article
    • Google Scholar
  • 59.

    Hayward, M. W. The need to rationalize and prioritize threatening processes used to determine threat status in the IUCN red list. Conserv. Biol. 23, 1568–1576 (2009).

    • Article
    • Google Scholar
  • 60.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

  • 61.

    Ericson, P. G. P. et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2, 543–547 (2006).

  • 62.

    Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

  • 63.

    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    • Article
    • Google Scholar
  • 64.

    Wild, S. et al. Long-term decline in survival and reproduction of dolphins following a marine heatwave. Curr. Biol. 29, R239–R240 (2019).

  • 65.

    Yeh, P. J., Hauber, M. E. & Price, T. D. Alternative nesting behaviours following colonisation of a novel environment by a passerine bird. Oikos 116, 1473–1480 (2007).

    • Article
    • Google Scholar
  • 66.

    Lapiedra, O., Schoener, T. W., Leal, M., Losos, J. B. & Kolbe, J. J. Predator-driven natural selection on risk-taking behavior in anole lizards. Science 360, 1017–1020 (2018).


  • Source: Ecology - nature.com

    3 Questions: Greg Britten on how marine life can recover by 2050

    The river–groundwater interface as a hotspot for arsenic release