in

Models with environmental drivers offer a plausible mechanism for the rapid spread of infectious disease outbreaks in marine organisms

  • 1.

    Shope, M. Sea Star Wasting. Proc. Natl. Acad. Sci. USA 111, 6855 (2014).

  • 2.

    Denner, E. B. M. et al. Aurantimonas coralicida gen. nov., sp. nov., the causative agent of white plague type II on Caribbean scleractinian corals. Int. J. Syst. Evol. Microbiol. 53, 1115–1122 (2003).

  • 3.

    Croquer, A., Pauls, S. M. & Zubillaga, A. L. White plague disease outbreak in a coral reef at Los Roques National Park, Venezuela. Rev. Biol. Trop. 1, 39–45 (2003).

    • Google Scholar
  • 4.

    Lafferty, K. D. & Kuris, A. M. Mass mortality of abalone Haliotis cracherodii on the California Channel Islands: tests of epidemiological hypotheses. Mar. Ecol. Ser. 96, 239 (1993).

    • Article
    • Google Scholar
  • 5.

    Lessios, H. A. Mass mortality of Diadema antillarum in the Caribbean: what have we learned? Annu. Rev. Ecol. Syst. 19, 371–393 (1988).

    • Article
    • Google Scholar
  • 6.

    McCallum, H. I., Harvell, D. & Dobson, A. P. Rates of spread of marine pathogens. Ecol. Lett. 6, 1062–1067 (2003).

    • Article
    • Google Scholar
  • 7.

    Hewson, I. et al. Densovirus associated with sea-star wasting disease and mass mortality. Proc. Natl. Acad. Sci. USA 111, 17278–83 (2014).

  • 8.

    Hewson, I. et al. Investigating the Complex Association Between Viral Ecology, Environment, and Northeast Pacific Sea Star Wasting. Frontiers in Marine Science 5, 77 (2018).

    • Article
    • Google Scholar
  • 9.

    Harvell, C. D. et al. Emerging Marine Diseases–Climate Links and Anthropogenic Factors. Science (80-.). 285, 1505–1510 (1999).

  • 10.

    Gehman, A.-L. M., Hall, R. J. & Byers, J. E. Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics. Proc. Natl. Acad. Sci. (2018).

  • 11.

    Bond, N. A., Cronin, M. F. & Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

  • 12.

    Jacox, M. G. et al. Forcing of Multiyear Extreme Ocean Temperatures that Impacted California Current Living Marine Resources in 2016. Bull. Am. Meteorol. Soc. 99, S27–S33 (2018).

    • Article
    • Google Scholar
  • 13.

    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Chang. 6, 1042–1047 (2016).

  • 14.

    Harvell, C. D. et al. Climate Warming and Disease Risks for Terrestrial and Marine Biota. Science (80-.). 296, 2158–2162 (2002).

  • 15.

    Gaylord, B. et al. Ocean acidification through the lens of ecological theory. Ecology 96, 3–15 (2014).

    • Article
    • Google Scholar
  • 16.

    Hayes, M. L. et al. How are climate and marine biological outbreaks functionally linked? In The Ecology and Etiology of Newly Emerging Marine Diseases 213–220 (Springer, 2001).

  • 17.

    Boch, C. A. et al. Local oceanographic variability influences the performance of juvenile abalone under climate change. Sci. Rep. 8, 5501 (2018).

  • 18.

    Micheli, F. et al. Evidence that marine reserves enhance resilience to climatic impacts. PLoS One 7 (2012).

  • 19.

    Cook, T., Folli, M., Klinck, J., Ford, S. & Miller, J. The relationship between increasing sea-surface temperature and the northward spread of Perkinsus marinus (Dermo) disease epizootics in oysters. Estuar. Coast. Shelf Sci. 46, 587–597 (1998).

  • 20.

    Hofmann, E., Ford, S., Powell, E. & Klinck, J. Modeling studies of the effect of climate variability on MSX disease in eastern oyster (Crassostrea virginica) populations. In The Ecology and Etiology of Newly Emerging Marine Diseases 195–212 (Springer, 2001).

  • 21.

    Soniat, T. M., Hofmann, E. E., Klinck, J. M. & Powell, E. N. Differential modulation of eastern oyster (Crassostrea virginica) disease parasites by the El-Nino-Southern Oscillation and the North Atlantic Oscillation. Int. J. Earth Sci. 98, 99 (2009).

  • 22.

    Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate Change and Infectious Diseases: From Evidence to a Predictive Framework. Science (80-.). 341, 514–519 (2013).

  • 23.

    Metcalf, C. J. E. et al. Identifying climate drivers of infectious disease dynamics: recent advances and challenges ahead. Proc. R. Soc. B Biol. Sci. 284 (2017).

  • 24.

    Mills, J. N., Gage, K. L. & Khan, A. S. Potential Influence of Climate Change on Vector-Borne and Zoonotic Diseases: A Review and Proposed Research Plan. Environ. Health Perspect. 118, 1507–1514 (2010).

  • 25.

    Koelle, K. The impact of climate on the disease dynamics of cholera. Clin. Microbiol. Infect. 15, 29–31 (2009).

  • 26.

    Koelle, K., Rodó, X., Pascual, M., Yunus, M. & Mostafa, G. Refractory periods and climate forcing in cholera dynamics. Nature 436, 696–700 (2005).

  • 27.

    Rinaldo, A. et al. Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proc. Natl. Acad. Sci. 109, 6602 LP–6607 (2012).

  • 28.

    Paaijmans, K. P., Read, A. F. & Thomas, M. B. Understanding the link between malaria risk and climate. Proc. Natl. Acad. Sci. 106, 13844 LP–13849 (2009).

  • 29.

    Paaijmans, K. P. et al. Influence of climate on malaria transmission depends on daily temperature variation. Proc. Natl. Acad. Sci. 107, 15135 LP–15139 (2010).

  • 30.

    Lambrechts, L. et al. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl. Acad. Sci. 108, 7460 LP–7465 (2011).

  • 31.

    Roy, M., Bouma, M., Dhiman, R. C. & Pascual, M. Predictability of epidemic malaria under non-stationary conditions with process-based models combining epidemiological updates and climate variability. Malar. J. 14, 419 (2015).

  • 32.

    Laneri, K. et al. Forcing Versus Feedback: Epidemic Malaria and Monsoon Rains in Northwest India. PLOS Comput. Biol. 6, e1000898 (2010).

  • 33.

    Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H. & Hudson, P. J. Evaluating the links between climate, disease spread, and amphibian declines. Proc. Natl. Acad. Sci. 105, 17436–17441 (2008).

  • 34.

    Rohr, J. R. & Raffel, T. R. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc. Natl. Acad. Sci. 107, 8269 LP–8274 (2010).

  • 35.

    Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).

    • Article
    • Google Scholar
  • 36.

    Santos-Vega, M., Bouma, M. J., Kohli, V. & Pascual, M. Population density, climate variables and poverty synergistically structure spatial risk in urban malaria in India. PLoS Negl. Trop. Dis. 10, e0005155 (2016).

  • 37.

    Bates, A. & Hilton, B. Effects of temperature, season and locality on wasting disease in the keystone predatory sea star Pisaster ochraceus. Dis. Aquat. Organ. 86, 245–251 (2009).

    • Article
    • Google Scholar
  • 38.

    Kohl, W. T., McClure, T. I. & Miner, B. G. Decreased Temperature Facilitates Short-Term Sea Star Wasting Disease Survival in the Keystone Intertidal Sea Star Pisaster ochraceus. PLoS One 11, e0153670 (2016).

  • 39.

    Eckert, G. L., Engle, J. M. & Kushner, D. J. Sea star disease and population declines at the Channel Islands. Proc. 5th Calif. Isl. Symp. 5, 390–393 (1999).

    • Google Scholar
  • 40.

    Eisenlord, M. E. et al. Ochre star mortality during the 2014 wasting disease epizootic: role of population size structure and temperature. Philos. Trans. R. Soc. B Biol. Sci. 371 (2016).

  • 41.

    Menge, B. A. et al. Sea Star Wasting Disease in the Keystone Predator Pisaster ochraceus in Oregon: Insights into Differential Population Impacts, Recovery, Predation Rate, and Temperature Effects from Long-Term Research. PLoS One 1–28, https://doi.org/10.6085/AA/publication (2016).

  • 42.

    Harvell, C. D. et al. Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Sci. Adv. 5, eaau7042 (2019).

  • 43.

    Miner, C. M. et al. Large-scale impacts of sea star wasting disease (SSWD) on intertidal sea stars and implications for recovery. PLoS One 13, e0192870 (2018).

  • 44.

    Ben-Horin, T., Lenihan, H. S. & Lafferty, K. D. Variable intertidal temperature explains why disease endangers black abalone. Ecology 94, 161–168 (2013).

    • Article
    • Google Scholar
  • 45.

    Crosson, L. M. & Friedman, C. S. Withering syndrome susceptibility of northeastern Pacific abalones: A complex relationship with phylogeny and thermal experience. J. Invertebr. Pathol. 151, 91–101 (2018).

    • Article
    • Google Scholar
  • 46.

    Delisle, L. et al. Temperature modulate disease susceptibility of the Pacific oyster Crassostrea gigas and virulence of the Ostreid herpesvirus type 1. Fish Shellfish Immunol (2018).

  • 47.

    de Kantzow, M., Hick, P., Becker, J. A. & Whittington, R. J. Effect of water temperature on mortality of Pacific oysters Crassostrea gigas associated with microvariant ostreid herpesvirus 1 (OsHV-1 µVar). Aquac. Environ. Interact. 8, 419–428 (2016).

    • Article
    • Google Scholar
  • 48.

    Moore, A. M. et al. A 4D-Var analysis system for the California Current: A prototype for an operational regional ocean data assimilation system. In Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II) 345–366 (Springer, 2013).

  • 49.

    Lafferty, K. D. et al. A general consumer-resource population model. Science (80-.). 349, 854 LP–857 (2015).

  • 50.

    Skellam, J. G. Random Dispersal in Theoretical Populations. Biometrika 38, 196–218 (1951).

  • 51.

    Bushek, D., Ford, S. E. & Chintala, M. M. Comparison of in vitro-cultured and wild-type Perkinsus marinus. III. Fecal elimination and its role in transmission. Dis. Aquat. Organ. 51, 217–225 (2002).

  • 52.

    Rohr, J. R. et al. Using physiology to understand climate-driven changes in disease and their implications for conservation. Conserv. Physiol. 1, cot022–cot022 (2013).

  • 53.

    Cohen, J. M. et al. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol. Lett. 20, 184–193 (2017).

  • 54.

    Rohr, J. R. et al. The complex drivers of thermal acclimation and breadth in ectotherms. Ecol. Lett. 21, 1425–1439 (2018).

  • 55.

    Williams, C. M. et al. Biological Impacts of Thermal Extremes: Mechanisms and Costs of Functional Responses Matter. Integr. Comp. Biol. 56, 73–84 (2016).

  • 56.

    Gagnaire, B., Frouin, H., Moreau, K., Thomas-Guyon, H. & Renault, T. Effects of temperature and salinity on haemocyte activities of the Pacific oyster, Crassostrea gigas (Thunberg). Fish Shellfish Immunol. 20, 536–547 (2006).

  • 57.

    Widdows, J. Physiological indices of stress in Mytilus edulis. J. Mar. Biol. Assoc. United Kingdom 58, 125–142 (1978).

  • 58.

    Jansen, J. M., Hummel, H. & Bonga, S. W. The respiratory capacity of marine mussels (Mytilus galloprovincialis) in relation to the high temperature threshold. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 153, 399–402 (2009).

  • 59.

    Angilletta Jr, M. J. & Angilletta, M. J. Thermal adaptation: a theoretical and empirical synthesis. (Oxford University Press, 2009).

  • 60.

    Morley, N. J. & Lewis, J. W. Temperature stress and parasitism of endothermic hosts under climate change. Trends Parasitol. 30, 221–227 (2014).

  • 61.

    Akaike, H. Information theory as an extension of the maximum likelihood principle B.N. Petrov, F. Csaki (Eds.), Second International Symposium on Information Theory, Akademiai Kiado, Budapest, 267–281 (1973).

  • 62.

    Altizer, S. et al. Seasonality and the dynamics of infectious diseases. Ecol. Lett. 9, 467–484 (2006).

  • 63.

    Schiebelhut, L. M., Puritz, J. B. & Dawson, M. N. Decimation by sea star wasting disease and rapid genetic change in a keystone species, Pisaster ochraceus. Proc. Natl. Acad. Sci. 201800285 (2018).

  • 64.

    Sanford, E. & Kelly, M. W. Local Adaptation in Marine Invertebrates. Annu. Rev. Mar. Sci 3, 509–537 (2011).

  • 65.

    Altstatt, J. M. et al. Recent declines of black abalone Haliotis cracherodii on the mainland coast of central California. Mar. Ecol. Prog. Ser. 142, 185–192 (1996).

  • 66.

    Sea S Wasting Syndrome|MARINe. Available at: http://data.piscoweb.org. (Accessed: 10th March 2015) (2018).


  • Source: Ecology - nature.com

    3 Questions: Greg Britten on how marine life can recover by 2050

    The river–groundwater interface as a hotspot for arsenic release