in

Fire and summer temperatures work together breaking physical seed dormancy

  • 1.

    Allen, H. Vegetation and ecosystem dynamics in The physical geography of the Mediterranean (ed. Woodward, J. C.) 203–227 (Oxford University Press, Oxford, 2009).

  • 2.

    Paula, S. & Pausas, J. G. Burning seeds: germinative response to heat treatments in relation to resprouting ability. Journal of Ecology 96, 543–552 (2008).

    • Article
    • Google Scholar
  • 3.

    Verdú, M. Ecological and evolutionary differences between Mediterranean seeders and resprouters. Journal of Vegetation Science 11, 265–268 (2000).

    • Article
    • Google Scholar
  • 4.

    Arianoutsou, M. & Margaris, N. S. Early stages of regeneration after fire in a phryganic ecosystem (East Mediterranean). I. Regeneration by seed germination. Biologie-Ecologie Méditerraneenne 8, 119–128 (1981).

    • Google Scholar
  • 5.

    Trabaud, L. Post-fire plant community dynamics in the Mediterranean Basin in The role of fire in Mediterranean-type ecosystems (eds. Moreno, J. M. & Oechel, W. C.) 1–15 (Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 1994).

  • 6.

    Thanos, C. A., Georghiou, K., Kadis, C. & Pantazi, C. Cistaceae: a plant family with hard seeds. Israel Journal of Botany 41, 251–263 (1992).

    • Google Scholar
  • 7.

    Baskin, J. M. & Baskin, C. C. A classification system for seed dormancy. Seed Science Research 14, 1–16 (2004).

    • Article
    • Google Scholar
  • 8.

    Baskin, C. C., Baskin, J. M. & Li, X. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biology 15, 139–152 (2000).

    • Article
    • Google Scholar
  • 9.

    Gama-Arachchige, N. S., Baskin, J. M., Geneve, R. L. & Baskin, C. C. Identification and characterization of ten new water gaps in seeds and fruits with physical dormancy and classification of water-gap complexes. Annals of Botany 112, 69–84 (2013).

  • 10.

    Geneve, R. L., Baskin, C. C., Baskin, J. M., Jayasuriya, K. M. G. G. & Gama-Arachchige, N. S. Functional morpho-anatomy of water-gap complexes in physically dormant seed. Seed Science Research 28, 186–191 (2018).

    • Article
    • Google Scholar
  • 11.

    Aronne, G. & Mazzoleni, S. The effects of heat exposure on seeds of Cistus incanus L. and Cistus monspeliensis L. Giornale Botanico Italiano 123, 283–289 (1989).

    • Google Scholar
  • 12.

    Ma, F. S., Cholewa, E., Mohamed, T., Peterson, C. A. & Gijzen, M. Cracks in the palisade cuticle of soybean seed coats correlate with their permeability to water. Annals of Botany 94, 213–228 (2004).

  • 13.

    Black, M. J., Halmer, P. & Bewley, J. D. The Encyclopedia of Seeds: Science, Technology and Uses (CAB International, London, 2006).

  • 14.

    Herranz, J. M., Ferrandis, P. & Martínez-Sánchez, J. J. Influence of heat on seed germination of nine woody Cistaceae species. International Journal of Wildland Fire 9, 173–182 (1999).

    • Article
    • Google Scholar
  • 15.

    Pérez-García, F. & González-Benito, M. E. Effects of temperature and different pre-treatments on seed germination of four Halimium species. Seed Science and Technology 33, 505–509 (2005).

    • Article
    • Google Scholar
  • 16.

    Moreira, B. & Pausas, J. G. Tanned or Burned: The Role of Fire in Shaping Physical Seed Dormancy. Plos One 7 (2012).

  • 17.

    Santana, V. M., Baeza, J. M. & Blanes, C. M. Clarifying the role of fire heat and daily temperature fluctuations as germination cues for Mediterranean Basin obligate seeders. Annals of Botany 111, 127–134 (2012).

  • 18.

    Auld, T. D. & Bradstock, R. A. Soil temperatures after the passage of a fire: Do they influence the germination of buried seeds? Australian Journal of Ecology 21, 106–109 (1996).

    • Article
    • Google Scholar
  • 19.

    Baeza, M. J. & Roy, J. Germination of an obligate seeder (Ulex parviflorus) and consequences for wildfire management. Forest Ecology and Management 256, 685–693 (2008).

    • Article
    • Google Scholar
  • 20.

    Ooi, M. K. J., Auld, T. D. & Denham, A. J. Projected soil temperature increase and seed dormancy response along an altitudinal gradient: implications for seed bank persistence under climate change. Plant and Soil 353, 289–303 (2012).

  • 21.

    Santana, V. M. et al. Effects of soil temperature regimes after fire on seed dormancy and germination in six Australian Fabaceae species. Australian Journal of Botany 58, 539–545 (2010).

    • Article
    • Google Scholar
  • 22.

    Cochrane, A. Are we underestimating the impact of rising summer temperatures on dormancy loss in hard-seeded species? Australian Journal of Botany 65, 248–256 (2017).

    • Article
    • Google Scholar
  • 23.

    Ooi, M. K. J., Denham, A. J., Santana, V. M. & Auld, T. D. Temperature thresholds of physically dormant seeds and plant functional response to fire: variation among species and relative impact of climate change. Ecology and Evolution 4, 656–671 (2014).

  • 24.

    Baskin, C. & Baskin, J. Seeds: ecology, biogeography, and evolution of dormancy and germination (Academic Press, San Diego, 2014).

  • 25.

    McKeon, G. M. & Mott, J. J. The Effect of temperature on the field softening of hard seed of Stylosanthes humilis and Stylosanthes hamata in a dry monsoonal climate. Australian Journal of Agricultural Research 33, 75–85 (1982).

    • Article
    • Google Scholar
  • 26.

    Rice, K. J. Responses of Erodium to varying microsites – the role of germination cueing. Ecology 66, 1651–1657 (1985).

    • Article
    • Google Scholar
  • 27.

    Jaganathan, G. K., Yule, K. J. & Biddick, M. Determination of the water gap and the germination ecology of Adenanthera pavonina (Fabaceae, Mimosoideae); the adaptive role of physical dormancy in mimetic seeds. Aob Plants 10 (2019).

  • 28.

    Baskin, J. M., Nan, X. Y. & Baskin, C. C. A comparative study of seed dormancy and germination in an annual and a perennial species of Senna (Fabaceae). Seed Science Research 8, 501–512 (1998).

    • Article
    • Google Scholar
  • 29.

    Zupo, T., Jaime Baeza, M. & Fidelis, A. The effect of simulated heat-shock and daily temperature fluctuations on seed germination of four species from fire-prone ecosystems. Acta Botanica Brasilica 30, 514–519 (2016).

    • Article
    • Google Scholar
  • 30.

    Bastida, F. & Talavera, S. Temporal and spatial patterns of seed dispersal in two Cistus species (Cistaceae). Annals of Botany 89, 427–434 (2002).

  • 31.

    Céspedes, B., Torres, I., Luna, B., Pérez, B. & Moreno, J. M. Soil seed bank, fire season, and temporal patterns of germination in a seeder-dominated Mediterranean shrubland. Plant Ecology 213, 383–393 (2012).

    • Article
    • Google Scholar
  • 32.

    Moreno, J. M. et al. Rainfall patterns after fire differentially affect the recruitment of three Mediterranean shrubs. Biogeosciences 8, 3721–3732 (2011).

  • 33.

    Luna, B., Chamorro, D. & Pérez, B. Effect of heat on seed germination and viability in species of Cistaceae. Plant Ecology and Diversity 12, 151–158 (2019).

    • Article
    • Google Scholar
  • 34.

    Ooi, M. K. J., Auld, T. D. & Denham, A. J. Climate change and bet-hedging: interactions between increased soil temperatures and seed bank persistence. Global Change Biology 15, 2375–2386 (2009).

  • 35.

    Luna, B., Pérez, B., Torres, I. & Moreno, J. M. Effects of incubation temperature on seed germination of Mediterranean plants with different geographical distribution ranges. Folia Geobotanica 47, 17–27 (2012).

    • Article
    • Google Scholar
  • 36.

    Thanos, C. A. & Georghiou, K. Ecophysiology of fire-stimulated seed germination in Cistus incanus ssp. creticus (L.) Heywood and C. salvifolius L. Plant, Cell and Environment 11, 841–849 (1988).

    • Article
    • Google Scholar
  • 37.

    Valbuena, L., Tárrega, R. & Luis, E. Influence of heat on seed germination of Cistus laurifolius and Cistus ladanifer. International Journal of Wildland Fire 2, 15–20 (1992).

    • Article
    • Google Scholar
  • 38.

    Castro, J. & Romero-García, A. T. Dormancy and germination in Cistus clusii (Cistaceae): effect of biotic and abiotic factors. Rev. Ecol. (Terre Vie) 54, 19–28 (1999).

    • Google Scholar
  • 39.

    Nadal, P., Sanchis, E., Pérez-García, F. & Fos, M. Effect of dry-heat, soaking in distilled water and gibberellic acid on the germination of Cistus clusii, C. monspeliensis and C. salvifolius seeds. Seed Science and Technology 30, 663–669 (2002).

    • Google Scholar
  • 40.

    Reyes, O. & Trabaud, L. Germination behaviour of 14 Mediterranean species in relation to fire factors: smoke and heat. Plant Ecology 202, 113–121 (2009).

    • Article
    • Google Scholar
  • 41.

    Pérez-García, F. & Gonzalez-Benito, M. E. In Xxviii International Horticultural Congress on Science and Horticulture for People 379–384 (Int Soc Horticultural Science, Leuven 1, 2012).

  • 42.

    Luna, B. & Chamorro, D. Germination sensitivity to water stress of eight Cistaceae species from the Western Mediterranean. Seed Science Research 26, 101–110 (2016).

    • Article
    • Google Scholar
  • 43.

    Saura-Mas, S., Saperas, A. & Lloret, F. Climatic and fire determinants of early life-history stages in the Mediterranean shrub Cistus albidus. Journal of Plant Ecology, https://doi.org/10.1093/jpe/rtz040 (2019).

  • 44.

    Fenner, M. & Thompson, K. The ecology of seeds. (Cambridge University Press, Cambridge, 2005).

  • 45.

    Philippi, T. & Seger, J. Hedging one’s evolutionary bets, revisited. Trends in Ecology & Evolution 4, 41–44 (1989).

  • 46.

    Quintana, J. R., Cruz, A., Fernández-González, F. & Moreno, J. M. Time of germination and establishment success after fire of three obligate seeders in a Mediterranean shrubland of Central Spain. Journal of Biogeography 31, 241–249 (2004).

    • Article
    • Google Scholar
  • 47.

    Bell, D. T., Plummer, J. A. & Taylor, S. K. Seed Germination Ecology in Southwestern Western Australia. The Botanical Review 59, 24–55 (1993).

    • Article
    • Google Scholar
  • 48.

    Bond, W. J. & Van Wilgen, B. W. Fire and plants (Chapman & Hall, London, 1996).

  • 49.

    Keeley, J. E. & Fotheringham, C. J. In Seeds. The ecology of regeneration in plant communities (ed. Fenner, M.) 311–331 (CAB International, United Kingdom, 2000).

  • 50.

    Probert, R. J. The role of temperature in the regulation of seed dormancy and germination in Seeds. The ecology of regeneration in plant communities (ed. Fenner, M.) 261–292 (CAB International, Wallingford, 2000).

  • 51.

    Ferrandis, P., Herranz, J. M. & Martínez-Sánchez, J. J. Effect of fire on hard-coated Cistaceae seed banks and its influence on techniques for quantifying seed banks. Plant Ecology 144, 113–114 (1999).

    • Article
    • Google Scholar
  • 52.

    Jayasuriya, K. M. G. G., Baskin, J. M. & Baskin, C. C. Cycling of sensitivity to physical dormancy-break in seeds of Ipomoea lacunosa (Convolvulaceae) and ecological significance. Annals of Botany 101, 341–352 (2008a).

  • 53.

    Jayasuriya, K. M. G. G., Baskin, J. M., Geneve, R. L., Baskin, C. C. & Chien, C. T. Physical dormancy in seeds of the holoparasitic angiosperm Cuscuta australis (Convolvulaceae, Cuscuteae): Dormancy-breaking requirements, anatomy of the water gap and sensitivity cycling. Annals of Botany 102, 39–48 (2008b).

  • 54.

    Rodrigues-Junior, A. G., Baskin, C. C., Baskin, J. M. & Garcia, Q. S. Sensitivity cycling in physically dormant seeds of the Neotropical tree Senna multijuga (Fabaceae). Plant Biology 20, 698–706 (2018).

  • 55.

    Taylor, G. B. Hardseededness in Mediterranean annual pasture legumes in Australia: a review. Australian Journal of Agricultural Research 56, 645–661 (2005).

    • Article
    • Google Scholar
  • 56.

    Jayasuriya, K. M. G. G., Baskin, J. M. & Baskin, C. C. Sensitivity cycling and its ecological role in seeds with physical dormancy. Seed Science Research 19, 3–13 (2009).

    • Article
    • Google Scholar
  • 57.

    Rolston, M. P. Water Impermeable Seed Dormancy. Botanical Review 44, 365–396 (1978).

  • 58.

    Norsworthy, J. K. & Oliveira, M. J. Role of light quality and temperature on pitted morningglory (Ipomoea lacunosa) germination with after-ripening. Weed Science 55, 111–118 (2007).

  • 59.

    Hagon, M. W. & Ballard, L. A. T. Reversibility of strophiolar permeability to water in seeds of subterranean clover (Trifolium subterraneum L). Australian. Journal of Biological Sciences 23, 519–528 (1970).

    • Google Scholar
  • 60.

    Leck, M. A., Parker, V. T. & Simpson, R. L. Ecology of soil seed banks (Academic Press, San Diego, 1989).

  • 61.

    Traba, J., Azcárate, F. M. & Peco, B. From what depth do seeds emerge? A soil seed bank experiment with Mediterranean grassland species. Seed Science Research 14, 297–303 (2004).

    • Article
    • Google Scholar
  • 62.

    Tieu, A., Dixon, W., Meney, K. A. & Sivasithamparam, K. The interaction of heat and smoke in the release of seed dormancy in seven species from Southwestern Western Australia. Annals of Botany 88, 259–265 (2001).

    • Article
    • Google Scholar
  • 63.

    Hnatiuk, R. J. & Hopkins, A. J. M. An ecological analysis of kwongan vegetation South of Eneabba, Western-Australia. Australian Journal of Ecology 6, 423–438 (1981).

    • Article
    • Google Scholar
  • 64.

    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, UK and New York, 2013).

  • 65.

    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Annals of Botany 116, 849–864 (2015).

  • 66.

    Walck, J. L., Hidayati, S. N., Dixon, K. W., Thompson, K. & Poschlod, P. Climate change and plant regeneration from seed. Global Change Biology 17, 2145–2161 (2011).

  • 67.

    Hudson, A. R., Ayre, D. J. & Ooi, M. K. J. Physical dormancy in a changing climate. Seed Science Research 25, 66–81 (2015).

    • Article
    • Google Scholar
  • 68.

    Herranz, J. M., Ferrandis, P., Copete, M. A., Duro, E. M. & Zalacaín, A. Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa. Plant Ecology 184, 259–272 (2006).

    • Article
    • Google Scholar
  • 69.

    Sosa, T., Valares, C., Alías, J. C. & Lobón, N. C. Persistence of flavonoids in Cistus ladanifer soils. Plant and Soil 337, 51–63 (2010).

  • 70.

    Bradshaw, S. D., Dixon, K. W., Hopper, S. D., Lambers, H. & Turner, S. R. Little evidence for fire-adapted plant traits in Mediterranean climate regions. Trends in Plant Science 16, 69–76 (2010).

  • 71.

    Keeley, J. E., Pausas, J. G., Rundel, P. W. & Bradstock, R. Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science 16, 406–411 (2011).

  • 72.

    Hernández Fernández, M., Álvarez Sierra, M. A. & Pelaez-Campomanes, P. Bioclimatic analysis of rodent palaeofaunas reveals severe climatic changes in Southwestern Europe during the Plio-Pleistocene. Palaeogeography Palaeoclimatology Palaeoecology 251, 500–526 (2007).

  • 73.

    Suc, J. P. Origin and Evolution of the Mediterranean Vegetation and Climate in Europe. Nature 307, 429–432 (1984).

  • 74.

    Rundel, P. W. et al. Fire and Plant Diversification in Mediterranean-Climate Regions. Frontiers in Plant Science 9 (2018).


  • Source: Ecology - nature.com

    A genetic toolbox for marine protists

    Uncovering spatial and ecological variability in gap size frequency distributions in the Canadian boreal forest