in

Shoot flammability of vascular plants is phylogenetically conserved and related to habitat fire-proneness and growth form

  • 1.

    Scott, A. C. Burning planet: The Story of Fire Through Time (Oxford Univ. Press, 2018).

  • 2.

    Mutch, R. W. Wildland fires and ecosystems—A hypothesis. Ecology 51, 1046–1051 (1970).

    • Article
    • Google Scholar
  • 3.

    Bond, W. J. & Midgley, J. J. Kill thy neighbour: an individualistic argument for the evolution of flammability. Oikos 73, 79–85 (1995).

    • Article
    • Google Scholar
  • 4.

    Pausas, J. G., Keeley, J. E. & Schwilk, D. W. Flammability as an ecological and evolutionary driver. J. Ecol. 105, 289–297 (2017).

    • Article
    • Google Scholar
  • 5.

    Midgley, J. J. Flammability is not selected for, it emerges. Aust. J. Bot. 61, 102–106 (2013).

    • Article
    • Google Scholar
  • 6.

    Bowman, D. M. J. S., French, B. J. & Prior, L. D. Have plants evolved to self-immolate? Front. Plant Sci. 5, 590 (2014).

    • Article
    • Google Scholar
  • 7.

    Snyder, J. R. The role of fire: much ado about nothing? Oikos 43, 404–405 (1984).

  • 8.

    Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. N. Phytol. 165, 525–538 (2005).

  • 9.

    Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).

    • Article
    • Google Scholar
  • 10.

    Bowman, D. M. et al. Fire in the Earth system. Science 324, 481–484 (2009).

  • 11.

    He, T. & Lamont, B. B. Baptism by fire: the pivotal role of ancient conflagrations in evolution of the Earth’s flora. Natl Sci. Rev. 5, 237–254 (2017).

    • Article
    • Google Scholar
  • 12.

    He, T., Lamont, B. B. & Pausas, J. G. Fire as a key driver of Earth’s biodiversity. Biol. Rev. 94, 1983–2010 (2019).

    • Article
    • Google Scholar
  • 13.

    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).

  • 14.

    Pausas, J. G., Alessio, G. A., Moreira, B. & Corcobado, G. Fires enhance flammability in Ulex parviflorus. N. Phytol. 193, 18–23 (2012).

    • Article
    • Google Scholar
  • 15.

    Archibald, S. et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 13, 033003 (2018).

    • Article
    • Google Scholar
  • 16.

    Simon, M. F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl Acad. Sci. USA 106, 20359–20364 (2009).

  • 17.

    He, T., Lamont, B. B. & Downes, K. S. Banksia born to burn. N. Phytol. 191, 184–196 (2011).

    • Article
    • Google Scholar
  • 18.

    Moreira, B., Castellanos, M. C. & Pausas, J. G. Genetic component of flammability variation in a Mediterranean shrub. Mol. Ecol. 23, 1213–1223 (2014).

  • 19.

    Doerr, S. H. & Santín, C. Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Proc. R. Soc. B 371, 20150345 (2016).

    • Google Scholar
  • 20.

    Engber, E. A. & Varner, J. M. III Patterns of flammability of the California oaks: the role of leaf traits. Can. J. Forest Res. 42, 1965–1975 (2012).

    • Article
    • Google Scholar
  • 21.

    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. N. Phytol. 194, 751–759 (2012).

    • Article
    • Google Scholar
  • 22.

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

  • 23.

    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Naturalist 160, 712–726 (2002).

  • 24.

    Blomberg, S. P., Garland, T. Jr & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).

    • Article
    • Google Scholar
  • 25.

    Molina-Venegas, R. & Rodríguez, M. Á. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol. Biol. 17, 53 (2017).

    • Article
    • Google Scholar
  • 26.

    Wyse, S. V. et al. A quantitative assessment of shoot flammability for 60 tree and shrub species supports rankings based on expert opinion. Int. J. Wildland Fire 25, 466–477 (2016).

    • Article
    • Google Scholar
  • 27.

    Santacruz-García, A. C., Bravo, S., del Corro, F. & Ojeda, F. A comparative assessment of plant flammability through a functional approach: the case of woody species from Argentine Chaco region. Austral Ecol. 44, 1416–1429 (2019).

    • Article
    • Google Scholar
  • 28.

    Rowe, N. & Speck, T. Plant growth forms: an ecological and evolutionary perspective. N. Phytol. 166, 61–72 (2005).

    • Article
    • Google Scholar
  • 29.

    Padullés Cubino, J., Buckley, H. L., Day, N. J., Pieper, R. & Curran, T. J. Community-level flammability declines over 25 years of plant invasion in grasslands. J. Ecol. 106, 1582–1594 (2018).

  • 30.

    Jaureguiberry, P., Bertone, G. & Díaz, S. Device for the standard measurement of shoot flammability in the field. Austral Ecol. 36, 821–829 (2011).

    • Article
    • Google Scholar
  • 31.

    Wyse, S. V., Perry, G. L. W. & Curran, T. J. Shoot-level flammability of species mixtures is driven by the most flammable species: implications for vegetation-fire feedbacks favouring invasive species. Ecosystems 21, 886–900 (2017).

  • 32.

    Slik, J. F. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA 115, 1837–1842 (2018).

    • Article
    • Google Scholar
  • 33.

    Webb, C. O. & Donoghue, M. J. Phylomatic: tree assembly for applied phylogenetics. Mol. Ecol. Resour. 5, 181–183 (2005).

    • Article
    • Google Scholar
  • 34.

    Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098-100 (2008).

    • Article
    • Google Scholar
  • 35.

    Gastauer, M. & Meira-Neto, J. An enhanced calibration of a recently released megatree for the analysis of phylogenetic diversity. Braz. J. Biol. 76, 619–628 (2016).

  • 36.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

  • 37.

    Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).

  • 38.

    Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).

    • Article
    • Google Scholar
  • 39.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    • Article
    • Google Scholar
  • 40.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • 41.

    Oksanen, J. et al. vegan: community ecology package. R package version 2.5-6 (2019); https://cran.r-project.org/web/packages/vegan/vegan.pdf

  • 42.

    Roberts, D. W. & Roberts, M. D. W. labdsv: ordination and multivariate analysis for ecology. R package version 2.0-1 (2019); https://cran.r-project.org/web/packages/labdsv/labdsv.pdf

  • 43.

    Peterson, B. G. et al. Performance analytics. R package version 1.5.3 (2019); http://cran.univparis1.fr/web/packages/PerformanceAnalytics/PerformanceAnalytics.pdf

  • 44.

    Banfield, J. D. & Raftery, A. E. Model-based Gaussian and non-Gaussian clustering. Biometrics 49, 803–821 (1993).

    • Article
    • Google Scholar
  • 45.

    Fraley, C., Raftery, A. & Scrucca, L. mclust: normal mixture modeling for model-based clustering, classification, and density estimation. R package version 4 (2014).


  • Source: Ecology - nature.com

    Evaluating the global energy system

    Energy economics class inspires students to pursue clean energy careers