in

Habitat provided by native species facilitates higher abundances of an invader in its introduced compared to native range

  • 1.

    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proceedings of the National Academy of Sciences 113, 11261–11265 (2016).

  • 2.

    Levine, J. M. et al. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. Lond. 270, 775–781 (2003).

  • 3.

    Gribben, P. E. & Byers, J. E. Comparative biogeography of marine invaders across their native and introduced ranges. Oceanogr. Mar. Biol. Ann. Rev. 58 (In Press).

  • 4.

    Keane, R. M. & Crawley, M. J. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution 17, 164–170, https://doi.org/10.1016/s0169-5347(02)02499-0 (2002).

  • 5.

    Colautti, R. I., Ricciardi, A., Grigorovich, I. A. & MacIsaac, H. J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 7, 721–733, https://doi.org/10.1111/j.1461-0248.2004.00616.x (2004).

    • Article
    • Google Scholar
  • 6.

    Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630, https://doi.org/10.1038/nature01346 (2003).

  • 7.

    Blossey, B. & Notzold, R. Evolution of increased competitive ability in invasive nonindigenous plants – a hypothesis. J. Ecol. 83, 887–889, https://doi.org/10.2307/2261425 (1995).

    • Article
    • Google Scholar
  • 8.

    Inderjit et al. Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology 92, 316–324, https://doi.org/10.1890/10-0400.1 (2011).

  • 9.

    Kaur, R. et al. Community impacts of Prosopis juliflora invasion: biogeographic and congeneric comparisons. PloS one 7, e44966–e44966, https://doi.org/10.1371/journal.pone.0044966 (2012).

  • 10.

    Bruno, J. F. & Bertness, V. In Marine Community Ecology (eds MD Bertness, SD Gaines, & ME Hay) 201–218 (Sinuaer Associates Inc., 2001).

  • 11.

    Stachowicz, J. J. Mutualism, facilitation, and the structure of ecological communities: positive interactions play a critical, but underappreciated, role in ecological communities by reducing physical or biotic stresses in existing habitats and by creating new habitats on which many species depend. Bioscience 51, 235–246 (2001).

    • Article
    • Google Scholar
  • 12.

    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).

    • Article
    • Google Scholar
  • 13.

    Ellwood, M. D. & Foster, W. A. Doubling the estimate of invertebrate biomass in a rainforest canopy. Nature 429, 549–551 (2004).

  • 14.

    Gribben, P. E. et al. Facilitation cascades in marine ecosystems: A synthesis and future directions. Oceanogr. Mar. Biol. Ann. Rev. 57, 127–168 (2019).

    • Article
    • Google Scholar
  • 15.

    Thomsen, M. S. et al. Secondary foundation species enhance biodiversity. Nature Ecology & Evolution 2, 634–639, https://doi.org/10.1038/s41559-018-0487-5 (2018).

    • Article
    • Google Scholar
  • 16.

    Bulleri, F., Bruno, J. F. & Benedetti-Cecchi, L. Beyond competition: incorporating positive interactions between species to predict ecosystem invasibility. PLoS Biol. 6, e162 (2008).

    • Article
    • Google Scholar
  • 17.

    Northfield, T. D. et al. Native turncoats and indirect facilitation of species invasions. Proc. R. Soc. B 285, 20171936 (2018).

    • Article
    • Google Scholar
  • 18.

    Rodriguez, L. F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Inv. 8, 927–939 (2006).

    • Article
    • Google Scholar
  • 19.

    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Inv. 1, 21–32 (1999).

    • Google Scholar
  • 20.

    Relva, M. A., Nunez, M. A. & Simberloff, D. Introduced deer reduce native plant cover and facilitate invasion of non-native tree species: evidence for invasional meltdown. Biol. Inv. 12, 303–311 (2010).

    • Article
    • Google Scholar
  • 21.

    Stout, J. C. & Tiedeken, E. J. Direct interactions between invasive plants and native pollinators: evidence, impacts and approaches. Func. Ecol. 31, 38–46 (2017).

    • Article
    • Google Scholar
  • 22.

    Reinhart, K. O. & Callaway, R. M. Soil biota and invasive plants. New Phytologist 170, 445–457 (2006).

    • Article
    • Google Scholar
  • 23.

    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386 (1994).

    • Article
    • Google Scholar
  • 24.

    Jones, C. G., Lawton, J. H. & Shachak, M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78, 1946–1957 (1997).

    • Article
    • Google Scholar
  • 25.

    Cavieres, L. A., Badano, E. I., Sierra-Almeida, A. & Molina-Montenegro, M. A. Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of Central Chile. Arctic, Antarctic, and Alpine Research 39, 229–236, doi:10.1657/1523-0430(2007)39[229:MMOCPA]2.0.CO;2 (2007).

  • 26.

    Altieri, A. H., van Wesenbeeck, B. K., Bertness, M. D. & Silliman, B. R. Facilitation cascade drives positive relationship between native biodiversity and invasion success. Ecology 91, 1269–1275 (2010).

    • Article
    • Google Scholar
  • 27.

    Byers, J. E., Gribben, P. E., Yeager, C. & Sotka, E. E. Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast. Biol. Inv. 14, 2587–2600, https://doi.org/10.1007/s10530-012-0254-5 (2012).

    • Article
    • Google Scholar
  • 28.

    Wright, J. T., Gribben, P. E. & Latzel, S. Native ecosystem engineer facilitates recruitment of invasive crab and native invertebrates. Biol. Inv. 18, 3163–3173, https://doi.org/10.1007/s10530-016-1206-2 (2016).

    • Article
    • Google Scholar
  • 29.

    Thomsen, M. S. & McGlathery, K. Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea. Estuarine Coastal & Shelf Science 62, 63–73 (2005).

  • 30.

    Dartnall, A. J. New Zealand sea stars in Tasmania. Papers and Proceedings of the Royal Society of Tasmania 103, 53–55 (1969).

    • Google Scholar
  • 31.

    King, R. Systematic relationships between Tasmanian and New Zealand populations of Petrolisthes elongatus (Crustacea: Anomura: Porcellanidea) Bachelor of Science (Honours) thesis, University of Melbourne (1997).

  • 32.

    Gribben, P. E., Simpson, M. & Wright, J. T. Relationships between an invasive crab, habitat availability and intertidal community structure at biogeographic scales. Marine Environmental Research 110, 124–131, https://doi.org/10.1016/j.marenvres.2015.08.006 (2015).

  • 33.

    Wright, J. T. & Gribben, P. E. Disturbance-mediated facilitation by an intertidal ecosystem engineer. Ecology (2017).

  • 34.

    Gribben, P. E. et al. Biogeographic comparisons of the traits and abundance of an invasive crab throughout its native and invasive ranges. Biol. Inv. 5, 1877–1885, https://doi.org/10.1007/s10530-013-0416-0 (2013).

    • Article
    • Google Scholar
  • 35.

    Wright, J. T., Holmes, Z. C. & Byers, J. E. Stronger positive association between an invasive crab and a native intertidal ecosystem engineer with increasing wave exposure. Marine Environmental Research 142, 124–129 (2018).

  • 36.

    Uyà, M., Bulleri, F., Wright, J. T. & Gribben, P. E. Facilitation of an invader by a native habitat-former increases along interacting gradients of environmental stress. Ecology n/a, e02961, https://doi.org/10.1002/ecy.2961.

  • 37.

    Hierro, J. L., Maron, J. L. & Callaway, R. M. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. J. Ecol. 93, 5–15 (2005).

    • Article
    • Google Scholar
  • 38.

    Callaway, R. M., Thelen, G. C., Rodriguez, A. & Holben, W. E. Soil biota and exotic plant invasion. Nature 427, 731–733, doi:http://www.nature.com/nature/journal/v427/n6976/suppinfo/nature02322_S1.html (2004).

  • 39.

    Reinhart, K. O., Packer, A., Van der Putten, W. H. & Clay, K. Plant–soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol. Lett. 6, 1046–1050 (2003).

    • Article
    • Google Scholar
  • 40.

    Prior, K. M. & Hellmann, J. J. Does enemy loss cause release? A biogeographical comparison of parasitoid effects on an introduced insect. Ecology 94, 1015–1024 (2013).

    • Article
    • Google Scholar
  • 41.

    DeWalt, S. J., Denslow, J. S. & Ickes, K. Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology 85, 471–483 (2004).

  • 42.

    Bertness, M. D., Leonard, G. H., Levine, J. M., Schmidt, P. R. & Ingraham, A. O. Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80, 2711–2726, https://doi.org/10.1890/0012-9658(1999)080[2711:TTRCOP]2.0.CO;2 (1999).

    • Article
    • Google Scholar
  • 43.

    Gribben, P. E. & Wright, J. T. Invasive seaweed enhances recruitment of a native bivalve: roles of refuge from predation and habitat choice. Mar. Ecol. Prog. Ser. 318, 177–185 (2006).

  • 44.

    Grosholz, E. D. & Ruiz, G. M. Biological invasions drive size increases in marine and estuarine invertebrates. Ecol. Lett. 6, 700–705 (2003).

    • Article
    • Google Scholar
  • 45.

    Levine, J. M., Adler, P. B. & Yelenik, S. G. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7, 975–989, https://doi.org/10.1111/j.1461-0248.2004.00657.x (2004).

    • Article
    • Google Scholar
  • 46.

    Wassick, A., Baeza, J. A., Fowler, A. & Wilber, D. Reproductive performance of the marine green porcelain crab Petrolisthes armatus Gibbes, 1850 in its introduced range favors further range expansion. Aquat. Invasions 12 (2017).

  • 47.

    Hollebone, A. L. & Hay, M. E. Population dynamics of the non-native crab Petrolisthes armatus invading the South Atlantic Bight at densities of thousands m−2. Mar. Ecol. Prog. Ser. 336, 211–223 (2007).

  • 48.

    Hiller, A. & Lessios, H. A. Phylogeography of Petrolisthes armatus, an invasive species with low dispersal ability. Scientific Reports 7, 3359, https://doi.org/10.1038/s41598-017-03410-8 (2017).

  • 49.

    Gregory, L. P., Campbell, M. L., Primo, C. & Hewitt, C. L. Biotic and abiotic factors affecting the Tasmanian distribution and density of the introduced New Zealand porcelain crab Petrolisthes elongatus. Aquat. Invasions 7, 491–501 (2012).

    • Article
    • Google Scholar
  • 50.

    Bates, D. et al. Package ‘lme4’. R Foundation for Statistical Computing, Vienna (2014).


  • Source: Ecology - nature.com

    Energy economics class inspires students to pursue clean energy careers

    Shut down of the South American summer monsoon during the penultimate glacial