in

Shut down of the South American summer monsoon during the penultimate glacial

  • 1.

    Lewis, S. L. Tropical forests and the changing earth system. Philos. Trans. R. Soc. B Biol. Sci. 361, 195–210 (2006).

    • Google Scholar
  • 2.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. 108, 9899–9904 (2011).

  • 3.

    Malhi, Y., Meir, P. & Brown, S. Forests, carbon and global climate. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 360, 1567–1591 (2002).

  • 4.

    Marengo, J. A. On the hydrological cycle of the Amazon basin: a historical review and current State-of-the-art. Rev. bras. meteorol. 21, 1–19 (2006).

    • Google Scholar
  • 5.

    Levine, N. M. et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl. Acad. Sci. 113, 793–797 (2016).

  • 6.

    Duarte, L. D. S., Bergamin, R. S., Marcilio-Silva, V., Seger, G. D. D. S. & Marques, M. C. M. Phylobetadiversity among forest types in the Brazilian Atlantic forest complex. PLoS ONE 9, e105043 (2014).

  • 7.

    Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4, 1411 (2013).

  • 8.

    Stríkis, N. M. et al. South American monsoon response to iceberg discharge in the North Atlantic. Proc. Natl. Acad. Sci. 115, 3788–3793 (2018).

  • 9.

    Cruz, F. W. et al. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 63–66 (2005).

  • 10.

    Deininger, M., Ward, B. M., Novello, V. F. & Cruz, F. W. Late Quaternary variations in the South American monsoon system as inferred by speleothems—New perspectives using the SISAL database. Quaternary 2, 6 (2019).

    • Google Scholar
  • 11.

    Bennett, K., Bhagwat, S. & Willis, K. Neotropical refugia. The Holocene 22, 1207–1214 (2012).

    • ADS
    • Google Scholar
  • 12.

    Baker, P. A. & Fritz, S. C. Nature and causes of Quaternary climate variation of tropical South America. Quat. Sci. Rev. 124, 31–47 (2015).

    • ADS
    • Google Scholar
  • 13.

    Flantua, S. G. A. et al. Updated site compilation of the Latin American Pollen Database. Rev. Palaeobot. Palynol. 223, 104–115 (2015).

    • Google Scholar
  • 14.

    Kershaw, A. P., Bretherton, S. C. & van der Kaars, S. A complete pollen record of the last 230 ka from Lynch’s Crater, north-eastern Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251, 23–45 (2007).

    • Google Scholar
  • 15.

    Miller, C. S., Gosling, W. D., Kemp, D. B., Coe, A. L. & Gilmour, I. Drivers of ecosystem and climate change in tropical West Africa over the past 540,000 years. J. Quat. Sci. 31, 671–677 (2016).

    • Google Scholar
  • 16.

    D’Apolito, C., Absy, M. L. & Latrubesse, E. M. The movement of pre-adapted cool taxa in north-central Amazonia during the last glacial. Quat. Sci. Rev. 169, 1–12 (2017).

    • ADS
    • Google Scholar
  • 17.

    Ledru, M.-P., Mourguiart, P. & Riccomini, C. Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeogr. Palaeoclimatol. Palaeoecol. 271, 140–152 (2009).

    • Google Scholar
  • 18.

    Litt, T., Pickarski, N., Heumann, G., Stockhecke, M. & Tzedakis, P. C. A 600,000 year long continental pollen record from Lake Van, eastern Anatolia (Turkey). Quat. Sci. Rev. 104, 30–41 (2014).

    • ADS
    • Google Scholar
  • 19.

    Bard, E. & Rickaby, R. E. M. Migration of the subtropical front as a modulator of glacial climate. Nature 460, 380–383 (2009).

  • 20.

    Khodri, M., Kageyama, M. & Roche, D. M. Sensitivity of South American tropical climate to Last Glacial Maximum boundary conditions: Focus on teleconnections with tropics and extratropics In Past Climate Variability in South America and Surrounding Regions (eds. Vimeux, F., Sylvestre, F. & Khodri, M.).14, 213–238 (Springer Netherlands, 2009).

  • 21.

    Vimeux, F., Masson, V., Jouzel, J., Stievenard, M. & Petit, J. R. Glacial–interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature 398, 410–413 (1999).

  • 22.

    Masson-Delmotte, V. et al. EPICA dome C record of glacial and interglacial intensities. Quat. Sci. Rev. 29, 113–128 (2010).

    • ADS
    • Google Scholar
  • 23.

    Fogwill, C. J., Turney, C. S. M., Hutchinson, D. K., Taschetto, A. S. & England, M. H. Obliquity control on southern hemisphere climate during the last glacial. Sci. Rep. 5, 11673 (2015).

  • 24.

    Riccomini, C. et al. The Colônia structure, São Paulo, Brazil. Meteorit. Planet. Sci. 46, 1630–1639 (2011).

  • 25.

    Ledru, M.-P. et al. Why deep drilling in the Colônia Basin (Brazil)? Sci. Drill. 20, 33–39 (2015).

    • Google Scholar
  • 26.

    Grimm, A., Ferraz, S. & Gomes, J. Precipitation anomalies in Southern Brazil associated with El Niño and La Niña events. Am. Meteorol. Soc. 11, 2863–2880 (1998).

    • Google Scholar
  • 27.

    Garreaud, R. D. Cold air incursions over subtropical South America: Mean structure and dynamics. Mon Weather Rev. 128, 2544–2559 (2000).

    • ADS
    • Google Scholar
  • 28.

    Garreaud, R. D., Vuille, M., Compagnucci, R. & Marengo, J. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 180–195 (2009).

    • Google Scholar
  • 29.

    DAEE. Portal do departamento de águas e energia elétrica. http://www.hidrologia.daee.sp.gov.br/ (2019)

  • 30.

    INMET. Instituto nacional de meteorologia. http://www.inmet.gov.br (2019)

  • 31.

    Locarnini, R. A. et al. World ocean atlas 2018. (ed. Mishonov, A.) 1, 52 (NOAA Atlas NESDIS, 2019).

  • 32.

    Garcia, R. J. F. & Pirani, J. R. Análise florística, ecológica e fitogeográfica do núcleo Curucutu, parque estadual da Serra do Mar (São Paulo, SP), com ênfase nos campos junto à crista da Serra do Mar. Hoehnea 32, 1–48 (2005).

    • Google Scholar
  • 33.

    Ledru, M.-P., Montade, V., Blanchard, G. & Hély, C. Long-term spatial changes in the distribution of the Brazilian Atlantic forest. Biotropica 48, 159–169 (2016).

    • Google Scholar
  • 34.

    Montade, V. et al. A new modern pollen dataset describing the Brazilian Atlantic forest. The Holocene 29, 1253–1262 (2019).

    • ADS
    • Google Scholar
  • 35.

    Naafs, B. D. A. et al. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids. Geochim. Cosmochim. Acta 208, 285–301 (2017).

  • 36.

    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).

  • 37.

    Laj, C., Guillou, H. & Kissel, C. Dynamics of the earth magnetic field in the 10–75 kyr period comprising the Laschamp and Mono Lake excursions: New results from the French Chaîne des Puys in a global perspective. Earth Planet. Sci. Lett. 387, 184–197 (2014).

  • 38.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18 O records. Paleoceanography 20, 1–17 (2005).

    • Google Scholar
  • 39.

    Santos, T. P. et al. Prolonged warming of the Brazil Current precedes deglaciations. Earth Planet. Sci. Lett. 463, 1–12 (2017).

  • 40.

    Kohfeld, K. E. et al. Southern hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis. Quat. Sci. Rev. 68, 76–95 (2013).

    • ADS
    • Google Scholar
  • 41.

    Cárdenas, M. L., Wilson, O. J., Schorn, L. A., Mayle, F. E. & Iriarte, J. A quantitative study of modern pollen–vegetation relationships in southern Brazil’s Araucaria forest. Rev. Palaeobot. Palynol. 265, 27–40 (2019).

    • Google Scholar
  • 42.

    Cruz, F. W., Burns, S. J., Karmann, I., Sharp, W. D. & Vuille, M. Reconstruction of regional atmospheric circulation features during the late Pleistocene in subtropical Brazil from oxygen isotope composition of speleothems. Earth Planet. Sci. Lett. 248, 495–507 (2006).

  • 43.

    Burns, S. J., Welsh, L. K., Scroxton, N., Cheng, H. & Edwards, R. L. Millennial and orbital scale variability of the South American monsoon during the penultimate glacial period. Sci. Rep. 9, 1234 (2019).

  • 44.

    Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages: westerlies and CO2 during the ice ages. Paleoceanography 21, 1–15 (2006).

    • Google Scholar
  • 45.

    de Boer, B., Lourens, L. J. & van de Wal, R. S. W. Persistent 400,000-year variability of Antarctic ice volume and the carbon cycle is revealed throughout the Plio-Pleistocene. Nat. Commun. 5, 2999 (2014).

  • 46.

    Gu, F. et al. Long-term vegetation, climate and ocean dynamics inferred from a 73,500 years old marine sediment core (GeoB2107-3) off southern Brazil. Quat. Sci. Rev. 172, 55–71 (2017).

    • ADS
    • Google Scholar
  • 47.

    Bosmans, J. H. C., Hilgen, F. J., Tuenter, E. & Lourens, L. J. Obliquity forcing of low-latitude climate. Clim. Past 11, 1335–1346 (2015).

    • Google Scholar
  • 48.

    Yin, Q. & Berger, A. Interglacial analogues of the Holocene and its natural near future. Quat. Sci. Rev. 120, 28–46 (2015).

    • ADS
    • Google Scholar
  • 49.

    Denton, G. H. et al. The last glacial termination. Science 328, 1652–1656 (2010).

  • 50.

    Menviel, L. et al. Southern hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nat. Commun. 9, 2503 (2018).

  • 51.

    Hirata, F. E. & Grimm, A. M. The role of synoptic and intraseasonal anomalies on the life cycle of rainfall extremes over South America: non-summer conditions. Clim. Dyn. 49, 313–326 (2017).

    • Google Scholar
  • 52.

    Marengo, J., Cornejo, A., Satyamurty, P. & Nobre, C. Cold surges in tropical and extratropical South America: The strong event in June 1994. Mon. Wea. Rev 125, 2759–2786 (1997).

    • ADS
    • Google Scholar
  • 53.

    Grimm, A. M. Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch. Environ. Res. Risk Assess. 25, 537–554 (2011).

    • Google Scholar
  • 54.

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    • CAS
    • Google Scholar
  • 55.

    Hua, Q., Barbetti, M. & Rakowski, A. Z. Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55, 2059–2072 (2013).

    • CAS
    • Google Scholar
  • 56.

    R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2019).

  • 57.

    Aitken, M. J. An introduction to optical dating: the dating of Quaternary sediments by the use of photon-stimulated luminescence. (Oxford University Press, 1998).

  • 58.

    Murray, A. S. & Wintle, A. G. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiat. Meas. 37, 377–381 (2003).

    • CAS
    • Google Scholar
  • 59.

    Jain, M., Duller, G. A. T. & Wintle, A. G. Dose response, thermal stability and optical bleaching of the 310 °C isothermal TL signal in quartz. Radiat. Meas. 42, 1285–1293 (2007).

    • CAS
    • Google Scholar
  • 60.

    Buylaert, J.-P. et al. A robust feldspar luminescence dating method for middle and late Pleistocene sediments: Feldspar luminescence dating of middle and late Pleistocene sediments. Boreas 41, 435–451 (2012).

    • Google Scholar
  • 61.

    Galbraith, R. F., Roberts, R. G., Laslett, G. M., Yoshida, H. & Olley, J. M. Optical dating of single and multiple grains of quartz from minmium rock shelter, northern Australia: part i, experimental design and statistical models. Archaeometry 41, 339–364 (1999).

  • 62.

    Guérin, G., Mercier, N. & Adamiec, G. Dose-rate conversion factors: update. Ancient TL 29, 5–8 (2011).

    • Google Scholar
  • 63.

    Prescott, J. & Stephan, L. The contribution of cosmic radiation to the environmental dose for thermoluminescent dating, latitude, altitude and depth dependences. PACT 6, 17–25 (1982).

    • CAS
    • Google Scholar
  • 64.

    Channell, J. E. T., Xuan, C. & Hodell, D. A. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet. Sci. Lett. 283, 14–23 (2009).

  • 65.

    Simon, Q. et al. Authigenic 10 Be/9 Be ratio signatures of the cosmogenic nuclide production linked to geomagnetic dipole moment variation since the Brunhes/Matuyama boundary. J. Geophys. Res. Solid Earth 121, 7716–7741 (2016).

  • 66.

    Simon, Q., St‐Onge, G. & Hillaire‐Marcel, C. Late Quaternary chronostratigraphic framework of deep Baffin Bay glaciomarine sediments from high‐resolution paleomagnetic data. Geochem. Geophys. Geosystems 13, 1–24 (2012).

    • Google Scholar
  • 67.

    Thouveny, N., Creer, K. M. & Blunk, I. Extension of the Lac du Bouchet palaeomagnetic record over the last 120,000 years. Earth Planet. Sci. Lett. 97, 140–161 (1990).

    • ADS
    • Google Scholar
  • 68.

    Croudace, I. W., Rindby, A. & Rothwell, R. G. ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geol. Soc. Lond. Spec. Publ. 267, 51–63 (2006).

  • 69.

    Chawchai, S., Kylander, M. E., Chabangborn, A., Löwemark, L. & Wohlfarth, B. Testing commonly used X-ray fluorescence core scanning-based proxies for organic-rich lake sediments and peat. Boreas 45, 180–189 (2016).

    • Google Scholar
  • 70.

    Hopmans, E. C., Schouten, S. & Sinninghe Damsté, J. S. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93, 1–6 (2016).

    • CAS
    • Google Scholar
  • 71.

    Davtian, N., Bard, E., Ménot, G. & Fagault, Y. The importance of mass accuracy in selected ion monitoring analysis of branched and isoprenoid tetraethers. Org. Geochem. 118, 58–62 (2018).

    • CAS
    • Google Scholar
  • 72.

    Davtian, N., Ménot, G., Fagault, Y. & Bard, E. Western mediterranean sea paleothermometry over the last glacial cycle based on the novel RI-OH index. Paleoceanogr. Paleoclimatology 34, 616–634 (2019).

    • Google Scholar
  • 73.

    Sanchi, L., Ménot, G. & Bard, E. An automated purification method for archaeal and bacterial tetraethers in soils and sediments. Org. Geochem. 54, 83–90 (2013).

    • CAS
    • Google Scholar
  • 74.

    De Jonge, C. et al. Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils: Implications for palaeoclimate reconstruction. Geochim. Cosmochim. Acta 141, 97–112 (2014).

    • ADS
    • Google Scholar
  • 75.

    Russell, J. M., Hopmans, E. C., Loomis, S. E., Liang, J. & Sinninghe Damsté, J. S. Distributions of 5- and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations. Org. Geochem. 117, 56–69 (2018).

    • CAS
    • Google Scholar
  • 76.

    Hopmans, E. C. et al. A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planet. Sci. Lett. 224, 107–116 (2004).

  • 77.

    Weijers, J. W. H., Schouten, S., Spaargaren, O. C. & Sinninghe Damsté, J. S. Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index. Org. Geochem. 37, 1680–1693 (2006).

    • CAS
    • Google Scholar
  • 78.

    De Jonge, C. et al. Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC–MS2, GC–MS and GC–SMB-MS. Org. Geochem. 54, 78–82 (2013).

    • ADS
    • Google Scholar
  • 79.

    Xiao, W. et al. Ubiquitous production of branched glycerol dialkyl glycerol tetraethers(brGDGTs) in global marine environments: a new source indicator for brGDGTs. Biogeosciences 13, 5883–5894 (2016).

  • 80.

    Martin, C. et al. Early Holocene Thermal Maximum recorded by branched tetraethers and pollen in Western Europe (Massif Central, France). Quat. Sci. Rev. 228, 106109 (2020).

    • Google Scholar
  • 81.

    Stute, M. et al. Cooling of tropical Brazil (5 °C) during the Last Glacial Maximum. Science 269, 379–383 (1995).

  • 82.

    Faegri, K. & Iversen, J. Textbook of Pollen Analysis (John Wiley & Sons, Chichester, 1989).

  • 83.

    Bennett, K. Psimpoll 4.27: C program for plotting pollen diagrams and analysing pollen data. (Department of Archaeology and Palaeoecology, Queen’s University of Belfast, 2009).

  • 84.

    Daniau, A.-L. et al. Orbital-scale climate forcing of grassland burning in southern Africa. Proc. Natl. Acad. Sci. 110, 5069–5073 (2013).

  • 85.

    Adler, R. F. et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present). J. Hydrometeorol. 4, 1147–1167 (2003).

    • ADS
    • Google Scholar
  • 86.

    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    • ADS
    • Google Scholar
  • 87.

    Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G. & Toucanne, S. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quat. Sci. Rev. 111, 94–106 (2015).

    • Google Scholar
  • 88.

    Henderson, G. M. & Slowey, N. C. Evidence from U–Th dating against Northern Hemisphere forcing of the penultimate deglaciation. Nature 404, 61–66 (2000).

  • 89.

    Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).


  • Source: Ecology - nature.com

    Invasive earthworms unlock arctic plant nitrogen limitation

    Efficacy of locally-available cleaning methods in removing biofilms from taps and surfaces of household water storage containers