in

Cable bacteria reduce methane emissions from rice-vegetated soils

  • 1.

    Pfeffer, C. et al. Filamentous bacteria transport electrons over centimetre distances. Nature 491, 218 (2012).

  • 2.

    Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B. & Sayama, M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463, 1071–1074 (2010).

  • 3.

    Marzocchi, U. et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J. 8, 1682 (2014).

  • 4.

    Burdorf, L. D. W. et al. Long-distance electron transport occurs globally in marine sediments. Biogeosciences 14, 683–701 (2017).

  • 5.

    Malkin, S. Y. et al. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. ISME J. 8, 1843–1854 (2014).

  • 6.

    Risgaard-Petersen, N. et al. Cable bacteria in freshwater sediments. Appl. Environ. Microbiol. 81, 6003–6011 (2015).

  • 7.

    Müller, H. et al. Long-distance electron transfer by cable bacteria in aquifer sediments. ISME J. 10, 2010–2019 (2016).

    • Article
    • Google Scholar
  • 8.

    Müller, H., Marozava, S., Probst, A. J. & Meckenstock, R. U. Groundwater cable bacteria conserve energy by sulfur disproportionation. ISME J. 14, 623–634 (2020).

    • Article
    • Google Scholar
  • 9.

    Kjeldsen, K. U. et al. On the evolution and physiology of cable bacteria. Proc. Natl. Acad. Sci. USA 116, 19116–19125 (2019).

  • 10.

    Risgaard-Petersen, N., Revil, A., Meister, P. & Nielsen, L. P. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim. Cosmochim. Acta 92, 1–13 (2012).

  • 11.

    Rao, A. M., Malkin, S. Y., Hidalgo-Martinez, S. & Meysman, F. J. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment. Geochim. Cosmochim. Acta 172, 265–286 (2016).

  • 12.

    Sandfeld, T., Marzocchi, U., Petro, C., Schramm, A. & Risgaard-Petersen, N. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J. https://doi.org/10.1038/s41396-020-0607-5 (2020).

  • 13.

    van der Gon, H. A. D., van Bodegom, P. M., Wassmann, R., Lantin, R. S. & Metra-Corton, T. M. Sulfate-containing amendments to reduce methane emissions from rice fields: mechanisms, effectiveness and costs. Mitig. Adapt. Strat. Glob. Change 6, 71–89 (2001).

    • Article
    • Google Scholar
  • 14.

    Kristjansson, J. K., Schönheit, P. & Thauer, R. K. Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate. Arch. Microbiol. 131, 278–282 (1982).

  • 15.

    Schönheit, P., Kristjansson, J. K. & Thauer, R. K. Kinetic mechanism for the ability of sulfate reducers to out-compete methanogens for acetate. Arch. Microbiol. 132, 285–288 (1982).

    • Article
    • Google Scholar
  • 16.

    Wörner, S. et al. Gypsum amendment to rice paddy soil stimulated bacteria involved in sulfur cycling but largely preserved the phylogenetic composition of the total bacterial community. Environ. Microbiol. Rep. 8, 413–423 (2016).

    • Article
    • Google Scholar
  • 17.

    Saenjan, P., Ro, S. & Vityakon, P. Methane fluxes and rice yields as a function of sulfate fertilizer with incorporated rice stubble. Asia Pac. J. Sci. Technol. 20, 337–345 (2015).

    • Google Scholar
  • 18.

    Seitaj, D. et al. Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc. Natl. Acad. Sci. USA 112, 13278–13283 (2015).

  • 19.

    Lu, Y., Wassmann, R., Neue, H.-U. & Huang, C. Dynamics of dissolved organic carbon and methane emissions in a flooded rice soil. Soil Sci. Soc. Am. J. 64, 2011–2017 (2000).

  • 20.

    Cummings, B., Caldwell, D., Gould, D. & Hamar, D. Identity and interactions of rumen microbes associated with dietary sulfate-induced polioencephalomalacia in cattle. Am. J. Vet. Res. 56, 1384–1389 (1995).

  • 21.

    Habtewold, J. et al. Reduction in methane emissions from acidified dairy slurry is related to inhibition of Methanosarcina species. Front. Microbiol. 9, 2806 (2018).

  • 22.

    Ye, R. et al. pH controls over anaerobic carbon mineralization, the efficiency of methane production, and methanogenic pathways in peatlands across an ombrotrophic–minerotrophic gradient. Soil Biol. Biochem. 54, 36–47 (2012).

  • 23.

    Wang, Z. P., DeLaune, R. D., Patrick, W. H. & Masscheleyn, P. H. Soil redox and pH effects on methane production in a flooded rice soil. Soil Sci. Soc. Am. J. 57, 382–385 (1993).

  • 24.

    Myrbo, A. et al. Sulfide generated by sulfate reduction is a primary controller of the occurrence of wild rice (Zizania palustris) in shallow aquatic ecosystems. J. Geophys. Res. Biogeosci. 122, 2736–2753 (2017).

    • Article
    • Google Scholar
  • 25.

    Williams, J. F., Mutters, R. G. & Greer, C. A. Rice Nutrient Management in California (UCANR Publ., Publ. 3516, Oakland, CA, 2010).

  • 26.

    Schauer, R. et al. Succession of cable bacteria and electric currents in marine sediment. ISME J. 8, 1314–1322 (2014).

  • 27.

    Scholz, V. V., Müller, H., Koren, K., Nielsen, L. P. & Meckenstock, R. U. The rhizosphere of aquatic plants is a habitat for cable bacteria. FEMS Microbiol. Ecol. 95, fiz062 (2019).

  • 28.

    Martin, B. C. et al. Oxygen loss from seagrass roots coincides with colonisation of sulphide-oxidising cable bacteria and reduces sulphide stress. ISME J. 13, 707–719 (2018).

    • Article
    • Google Scholar
  • 29.

    Larsen, M. et al. O2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes. Plant Soil 390, 279–292 (2015).

  • 30.

    Revsbech, N. P. & Jørgensen, B. B. in Advances in Microbial Ecology, Vol. 9, 293–352 (Springer, Boston, 1986).


  • Source: Ecology - nature.com

    Local food crop production can fulfil demand for less than one-third of the population

    FiCli, the Fish and Climate Change Database, informs climate adaptation and management for freshwater fishes