in

Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific

  • 1.

    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).

  • 2.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373 (2017).

  • 3.

    Smale, D. A., Wernberg, T. & Vanderklift, M. A. Regional-scale variability in the response of benthic macroinvertebrate assemblages to a marine heatwave. Mar. Ecol. Prog. Ser. 568, 17–30 (2017).

  • 4.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3, 78 (2013).

  • 5.

    Collins, M. et al. Extremes, Abrupt Changes and Managing Risks. (2019).

  • 6.

    Pershing, A. J., Mills, K. E., Dayton, A. M., Franklin, B. S. & Kennedy, B. T. Evidence for adaptation from the 2016 marine heatwave in the Northwest Atlantic Ocean. Oceanography 31, 152–161 (2018).

    • Article
    • Google Scholar
  • 7.

    Caputi, N. et al. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecol. Evol. 6, 3583–3593 (2016).

  • 8.

    Li, L. et al. Subregional differences in groundfish distributional responses to anomalous ocean bottom temperatures in the northeast Pacific. Glob. Chang. Biol. 25, 2560–2575 (2019).

  • 9.

    Yang, Q. et al. How “The Blob” affected groundfish distributions in the Gulf of Alaska. Fish. Oceanogr. 28, 434–453 (2019).

    • Google Scholar
  • 10.

    Reed, D. et al. Extreme warming challenges sentinel status of kelp forests as indicators of climate change. Nat. Commun. 7, 13757 (2016).

  • 11.

    Bindoff, N. L. et al. Changing Ocean, Marine Ecosystems, and Dependent Communities. (2019).

  • 12.

    Jones, T. et al. Massive mortality of a planktivorous seabird in response to a marine heatwave. Geophys. Res. Lett. 45, 3193–3202 (2018).

  • 13.

    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

  • 14.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

  • 15.

    Darmaraki, S. et al. Future evolution of Marine Heatwaves in the Mediterranean Sea. Clim. Dyn. 53, 1371–1392 (2019).

    • Article
    • Google Scholar
  • 16.

    Bond, N. A., Cronin, M. F. & Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

  • 17.

    Laufkötter, C., Frölicher, T. L. & Zscheischler, J. High-impact marine heatwaves attributable to human-induced global warming (under review). Science (80-).

  • 18.

    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major Shifts in Pelagic Micronekton and Macrozooplankton Community Structure in an Upwelling Ecosystem Related to an Unprecedented Marine Heatwave. Front. Mar. Sci. 6, 212 (2019).

    • Article
    • Google Scholar
  • 19.

    Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the northeast Pacific: Winners, Losers, and the Future. Oceanography 29, 273–285 (2016).

    • Article
    • Google Scholar
  • 20.

    Leising, A. W. et al. State of the California Current 2014–15: Impacts of the Warm-Water “Blob”. Calif. Coop. Ocean. Fish. Investig. Reports 56 (2015).

  • 21.

    Whitney, F. A. Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophys. Res. Lett. 42, 428–431 (2015).

  • 22.

    Yang, B., Emerson, S. R. & Peña, M. A. The effect of the 2013–2016 high temperature anomaly in the subarctic Northeast Pacific (the “Blob”) on net community production. Biogeosciences 15, 6747–6759 (2018).

  • 23.

    Santora, J. A. et al. Impacts of ocean climate variability on biodiversity of pelagic forage species in an upwelling ecosystem. Mar. Ecol. Prog. Ser. 580, 205–220 (2017).

  • 24.

    NOAA. New Marine Heatwave Emerges off West Coast, Resembles ‘the Blob’. Available at: https://www.fisheries.noaa.gov/feature-story/new-marine-heatwave-emerges-west-coast-resembles-blob (2019).

  • 25.

    Earl, E. Stock decline leads to historic shutdown for Gulf P-cod. Alaska Journal of Commerce (2019).

  • 26.

    O’Connor, M. I. et al. Strengthening confidence in climate change impact science. Glob. Ecol. Biogeogr. 24, 64–76 (2015).

    • Article
    • Google Scholar
  • 27.

    Cheung, W. W. L., Brodeur, R. D., Okey, T. A. & Pauly, D. Projecting future changes in distributions of pelagic fish species of Northeast Pacific shelf seas. Prog. Oceanogr. 130, 19–31 (2015).

  • 28.

    Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science (80-). 349, aac4722 (2015).

  • 29.

    Portner, H. O. et al. Ocean systems. in Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (eds. Field, C. B. et al.) 1–138 (2014).

  • 30.

    Weatherdon, L. V., Ota, Y., Jones, M. C., Close, D. A. & Cheung, W. W. L. Projected scenarios for coastal First Nations’ fisheries catch potential under climate change: management challenges and opportunities. Plos One 11, e0145285 (2016).

  • 31.

    Morley, J. W. et al. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. Plos One 13, e0196127 (2018).

  • 32.

    Pauly, D. et al. Fisheries in large marine ecosystems: descriptions and diagnoses. UNEP large Mar. Ecosyst. Rep. a Perspect. Chang. Cond. LMEs World’s Reg. Seas. UNEP Reg. Seas Reports Stud. 23–40 (2008).

  • 33.

    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate-carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

  • 34.

    Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an earth system model. Biogeosciences 11, 18189–18227 (2015).

    • Article
    • Google Scholar
  • 35.

    Dunne, J. P. et al. GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics. J. Clim. 26, 2247–2267 (2013).

  • 36.

    Cheung, W. W. L., Lam, V. W. Y. & Pauly, D. Dynamic bioclimate envelope model to predict climate-induced changes in distribution of marine fishes and invertebrates. in Modelling Present and Climate-shifted Distributions of Marine Fishes and Invertebrates (eds. Cheung, W. W. L., Lam, V. W. Y. & Pauly, D.) 16(3), 5–50 (University of British Columbia, 2008).

  • 37.

    Cheung, W. W. L. et al. Structural uncertainty in projecting global fisheries catches under climate change. Ecol. Modell. 325, 57–66 (2016).

  • 38.

    Checkley, D. M. Jr. & Barth, J. A. Patterns and processes in the California Current System. Prog. Oceanogr. 83, 49–64 (2009).

  • 39.

    Lindegren, M., Checkley, D. M., Rouyer, T., MacCall, A. D. & Stenseth, N. C. Climate, fishing, and fluctuations of sardine and anchovy in the California Current. Proc. Natl. Acad. Sci. 110, 13672–13677 (2013).

  • 40.

    Tseng, Y.-H., Ding, R. & Huang, X. The warm Blob in the northeast Pacific—the bridge leading to the 2015/16 El Niño. Environ. Res. Lett. 12, 54019 (2017).

    • Article
    • Google Scholar
  • 41.

    Barange, M. et al. Impacts of climate change on fisheries and aquaculture. (United Nations’ Food and Agriculture Organization, 2018).

  • 42.

    Miller, D. D., Ota, Y., Sumaila, U. R., Cisneros-Montemayor, A. M. & Cheung, W. W. L. Adaptation strategies to climate change in marine systems. Glob. Chang. Biol. 24, e1–e14 (2018).

  • 43.

    Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science (80-) 350, 809–812 (2015).

  • 44.

    Bindoff, N. L. et al. Detection and attribution of climate change: from global to regional. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the INtergovernmental Panel on Climate Change (Cambridge University Press, 2013).

  • 45.

    Turi, G. et al. Response of O2 and pH to ENSO in the California Current System in a high-resolution global climate model. Ocean Sci. 14, 69–86 (2018).

  • 46.

    Laufkötter, C. et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences 12, 6955–6984 (2015).

  • 47.

    Vancoppenolle, M. et al. Future Arctic Ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms. Global Biogeochem. Cycles 27, 605–619 (2013).

  • 48.

    Lancelot, C. et al. Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: a model study. Biogeosciences 6, 2861–2878 (2009).

  • 49.

    Le Fouest, V., Babin, M. & Tremblay, J. E. The fate of riverine nutrients on Arctic shelves. Biogeosciences 10, 3661–3677 (2013).

  • 50.

    Luoto, M., Pöyry, J., Heikkinen, R. K. & Saarinen, K. Uncertainty of bioclimate envelope models based on the geographical distribution of species. Glob. Ecol. Biogeogr 14, 575–584 (2005).

    • Article
    • Google Scholar
  • 51.

    Araujo, M. B. & Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 33, 1677–1688 (2006).

    • Article
    • Google Scholar
  • 52.

    Cheung, W. W. L., Pauly, D. & Sarmiento, J. L. How to make progress in projecting climate change impacts. ICES J. Mar. Sci. J. du Cons 70, 1069–1074 (2013).

    • Article
    • Google Scholar
  • 53.

    Griffies, S. M. et al. Problems and prospects in large-scale ocean circulation models. Proc. Ocean 9, 410–431 (2009).

    • Google Scholar
  • 54.

    Riahi, K. et al. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).

  • 55.

    Pauly, D., Zeller, D. & Palomares, M. D. Sea Around Us Concepts, Design and Data (www.seaaroundus.org). (2020).


  • Source: Ecology - nature.com

    Accounting for detection unveils the intricacy of wild boar and rabbit co-occurrence patterns in a Mediterranean landscape

    Impacts of Saharan Dust Intrusions on Bacterial Communities of the Low Troposphere