in

Multiple differences in pathogen-host cell interactions following a bacterial host shift

  • 1.

    Morens, D. M. & Fauci, A. S. Emerging Infectious Diseases: Threats to Human Health and Global Stability. Plos Pathog. 9, e1003467 (2013).

  • 2.

    Engering, A., Hogerwerf, L. & Slingenbergh, J. Pathogen-host-environment interplay and disease emergence. Emerging Microbes and Infections 2, e5, https://doi.org/10.1038/emi.2013.5 (2013).

  • 3.

    Woolhouse, M. E. J., Haydon, D. T. & Antia, R. Emerging pathogens: The epidemiology and evolution of species jumps. Trends in Ecology and Evolution 20, 238–244 (2005).

  • 4.

    Lambrechts, L. Dissecting the genetic architecture of host-pathogen specificity. Plos Pathog. 6, 9–10 (2010).

  • 5.

    Ribet, D. & Cossart, P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes and Infection 17, 173–183 (2015).

  • 6.

    Pizarro-Cerdá, J. & Cossart, P. Bacterial adhesion and entry into host cells. Cell 124, 715–727 (2006).

  • 7.

    Longdon, B., Brockhurst, M. A., Russell, C. A., Welch, J. J. & Jiggins, F. M. The Evolution and Genetics of Virus Host Shifts. Plos Pathog. 10, e1004395, https://doi.org/10.1371/journal.ppat.1004395 (2014).

  • 8.

    Vouga, M. & Greub, G. Emerging bacterial pathogens: The past and beyond. Clinical Microbiology and Infection 22, 12–21 (2016).

  • 9.

    Pereyre, S., Goret, J. & Bébéar, C. Mycoplasma pneumoniae: Current knowledge on macrolide resistance and treatment. Front. Microbiol. 7, 974, https://doi.org/10.3389/fmicb.2016.00974 (2016).

  • 10.

    Maunsell, F. P. & Donovan, G. A. Mycoplasma bovis Infections in Young Calves. Veterinary Clinics of North America – Food Animal Practice 25, 139–177 (2009).

  • 11.

    Citti, C. & Blanchard, A. Mycoplasmas and their host: Emerging and re-emerging minimal pathogens. Trends in Microbiology 21, 196–203 (2013).

  • 12.

    Rosengarten, R. et al. The Changing Image of Mycoplasmas: From Innocent Bystanders to Emerging and Reemerging Pathogens in Human and Animal Diseases. in Emerging Bacterial Pathogens (eds. Muhldorfer, I. & Shafer, K.) 166–185 (2001).

  • 13.

    Sirand-Pugnet, P., Citti, C., Barré, A. & Blanchard, A. Evolution of mollicutes: down a bumpy road with twists and turns. Res. Microbiol. 158, 754–766 (2007).

  • 14.

    Rosengarten, R. et al. Host-pathogen interactions in mycoplasma pathogenesis: Virulence and survival strategies of minimalist prokaryotes. Int. J. Med. Microbiol. 290, 15–25 (2000).

  • 15.

    Delaney, N. F. et al. Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. Plos Genet. 8, e1002511, https://doi.org/10.1371/journal.pgen.1002511 (2012).

  • 16.

    Morelli, G. et al. Microevolution of Helicobacter pylori during prolonged infection of single hosts and within families. Plos Genet. 6, 1–12 (2010).

  • 17.

    Citti, C., Nouvel, L.-X. & Baranowski, E. Phase and antigenic variation in mycoplasmas. Future Microbiol. 5, 1073–1085 (2010).

  • 18.

    May, M., Papazisi, L., Gorton, T. S. & Geary, S. J. Identification of fibronectin-binding proteins in Mycoplasma gallisepticum strain R. Infect. Immun. 74, 1777–1785, https://doi.org/10.1128/IAI.74.3.1777-1785.2006 (2006).

  • 19.

    Masukagami, Y. et al. The Mycoplasma gallisepticum virulence factor lipoprotein MslA is a novel polynucleotide binding protein. Infect. Immun. 81, 3220–3226 (2013).

  • 20.

    Szczepanek, S. M. et al. Identification of lipoprotein MslA as a neoteric virulence factor of Mycoplasma gallisepticum. Infect. Immun. 78, 3475–3483 (2010).

  • 21.

    Hudson, P. et al. Identification of a virulence-associated determinant, dihydrolipoamide dehydrogenase (lpd), in Mycoplasma gallisepticum through in vivo screening of transposon mutants. Infect. Immun. 74, 931–939, https://doi.org/10.1128/IAI.74.2.931-939.2006 (2006).

  • 22.

    Winner, F., Rosengarten, R. & Citti, C. In vitro cell invasion of Mycoplasma gallisepticum. Infect. Immun., https://doi.org/10.1128/IAI.68.7.4238-4244.2000 (2000).

  • 23.

    Vogl, G. et al. Mycoplasma gallisepticum invades chicken erythrocytes during infection. Infect. Immun. 68, 4238–4244, https://doi.org/10.1128/IAI.00871-07 (2008).

  • 24.

    Ley, D. H., Berkhoff, J. E. & McLaren, J. M. Mycoplasma gallisepticum Isolated from House Finches (Carpodacus mexicanus) with Conjunctivitis. Avian Dis. 40, 480–483, https://doi.org/10.2307/1592250 (2006).

    • Article
    • Google Scholar
  • 25.

    Fischer, J. R., Stallknecht, D. E., Luttrell, M. P., Dhondt, A. A. & Converse, K. A. Mycoplasmal Conjunctivitis in Wild Songbirds: The Spread of a New Contagious Disease in a Mobile Host Population. Emerg. Infect. Dis. 3, 69–72, https://doi.org/10.3201/eid0301.970110 (1997).

  • 26.

    Levisohn, S. & Kleven, S. H. Avian mycoplasmosis (Mycoplasma gallisepticum). Rev. Sci. Tech. 32, 220–231 (2000).

    • Google Scholar
  • 27.

    Ley, D. H., Berkhoff, J. E. & McLaren, J. M. Mycoplasma gallisepticum isolated from house finches (Carpodacus mexicanus) with conjunctivitis. Avian Dis. 40, 480–483 (1996).

  • 28.

    Hochachka, W. M. et al. Multiple host transfers, but only one successful lineage in a continent-spanning emergent pathogen. Proc. R. Soc. B Biol. Sci. 280, 20131068, https://doi.org/10.1098/rspb.2013.1068 (2013).

    • Article
    • Google Scholar
  • 29.

    Gumulak-Smith, J. et al. Variations in the surface proteins and restriction enzyme systems of Mycoplasma pulmonis in the respiratory tract of infected rats. Mol. Microbiol. 40, 1037–1044 (2001).

  • 30.

    Szczepanek, S. M. et al. Comparative genomic analyses of attenuated strains of Mycoplasma gallisepticum. Infect. Immun. 78, 1760–71 (2010).

  • 31.

    Tulman, E. R. et al. Extensive variation in surface lipoprotein gene content and genomic changes associated with virulence during evolution of a novel North American house finch epizootic strain of Mycoplasma gallisepticum. Microbiol. 158, 2073–2088, https://doi.org/10.1099/mic.0.058560-0 (2012).

  • 32.

    Papazisi, L., Troy, K. E., Gorton, T. S., Liao, X. & Geary, S. J. Analysis of cytadherence-deficient, GapA-negative Mycoplasma gallisepticum strain R. Infect. Immun. 68, 6643–6649 (2000).

  • 33.

    Winner, F. et al. Phenotypic switching in Mycoplasma gallisepticum hemadsorption is governed by a high-frequency, reversible point mutation. Infect. Immun. 71, 1265–1273 (2003).

  • 34.

    Indiková, I. et al. Role of the GapA and CrmA Cytadhesins of Mycoplasma gallisepticum in Promoting Virulence and Host Colonization. Infect. Immun. 81, 1618–1624, https://doi.org/10.1128/iai.00112-13 (2013).

  • 35.

    Papazisi, L. et al. The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain Rlow. Microbiology 149, 2307–2316, https://doi.org/10.1099/mic.0.26427-0 (2003).

  • 36.

    Much, P., Winner, F., Stipkovits, L., Rosengarten, R. & Citti, C. Mycoplasma gallisepticum: Influence of cell invasiveness on the outcome of experimental infection in chickens. FEMS Immunol. Med. Microbiol. 15, 181–186, https://doi.org/10.1016/S0928-8244(02)00378-4 (2002).

    • Article
    • Google Scholar
  • 37.

    Ron, M. et al. Mycoplasma gallisepticum in vivo induced antigens expressed during infection in chickens. Vet. Microbiol. 175, 265–274 (2015).

  • 38.

    Szczepanek, S. M., Boccaccio, M., Pflaum, K., Liao, X. & Geary, S. J. Hydrogen peroxide production from glycerol metabolism is dispensable for virulence of Mycoplasma gallisepticum in the tracheas of chickens. Infect. Immun. 82, 4915–4920 (2014).

  • 39.

    Fürnkranz, U. et al. Factors influencing the cell adhesion and invasion capacity of Mycoplasma gallisepticum. Acta Vet. Scand. 55, 63 (2013).

  • 40.

    Hawley, D. M. et al. Parallel Patterns of Increased Virulence in a Recently Emerged Wildlife Pathogen. Plos Biol. 11, e1001570, https://doi.org/10.1371/journal.pbio.1001570 (2013).

  • 41.

    Bonneaud, C. et al. Rapid Antagonistic Coevolution in an Emerging Pathogen and Its Vertebrate Host. Curr. Biol. 28, 2978–2983, https://doi.org/10.1016/j.cub.2018.07.003 (2018).

  • 42.

    Bonneaud, C. et al. Rapid evolution of disease resistance is accompanied by functional changes in gene expression in a wild bird. Proc. Natl. Acad. Sci. 108, 7866–7871 (2011).

  • 43.

    Winner, F., Rosengarten, R. & Citti, C. In vitro cell invasion of Mycoplasma gallisepticum. Infect. Immun. 68, 4238–4244 (2000).

  • 44.

    Matyushkina, D. et al. Phase Transition of the Bacterium upon Invasion of a Host Cell as a Mechanism of Adaptation: a Mycoplasma gallisepticum Model. Sci. Rep. 6, 35959 (2016).

  • 45.

    Heesemann, J. & Laufs, R. Double immunofluorescence microscopic technique for accurate differentiation of extracellularly and intracellularly located bacteria in cell culture. J. Clin. Microbiol. 22, 168–175 (1985).

  • 46.

    Elsinghorst, E. A. Measurement of invasion by gentamicin resistance. Methods Enzymol. 236, 405–420 (1994).

  • 47.

    Finlay, B. B. & Cossart, P. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276, 718–725 (1997).

  • 48.

    Razin, S. Adherence of pathogenic mycoplasmas to host cells. Biosci. Rep. 19, 367–372 (1999).

  • 49.

    Rottem, S. Interaction of mycoplasmas with host cells. Physiol. Rev. 83, 417–432 (2003).

  • 50.

    Browning, G. F., Marenda, M. S., Noormohammadi, A. H. & Markham, P. F. The central role of lipoproteins in the pathogenesis of mycoplasmoses. Veterinary Microbiology 153, 44–50 (2011).

  • 51.

    Razin, S. & Jacobs, E. Review Article Mycoplasma adhesion. J. Gen. Microbiol. 138, 407–422 (1992).

  • 52.

    Goh, M. S., Gorton, T. S., Forsyth, M. H., Troy, K. E. & Geary, S. J. Molecular and biochemical analysis of a 105 kDa Mycoplasma gallisepticum cytadhesin (GapA). Microbiology 144, 2971–2978 (1998).

  • 53.

    Keeler, C. L., Hnatow, L. L., Whetzel, P. L. & Dohms, J. E. Cloning and characterization of a putative cytadhesin gene (mgc1) from Mycoplasma gallisepticum. Infect. Immun. 64, 1541–1547 (1996).

  • 54.

    Yoshida, S., Fujisawa, A., Tsuzaki, Y. & Saitoh, S. Identification and expression of a Mycoplasma gallisepticum surface antigen recognized by a monoclonal antibody capable of inhibiting both growth and metabolism. Infect. Immun. 68, 3186–3192 (2000).

  • 55.

    Tarshis, M., Yavlovich, A., Katzenell, A., Ginsburg, I. & Rottem, S. Intracellular Location and Survival of Mycoplasma penetrans Within HeLa Cells. Curr. Microbiol. 49, 136–140 (2004).

  • 56.

    Razin, S., Yogev, D. & Naot, Y. Molecular biology and pathogenicity of mycoplasmas. Microbiol. Mol. Biol. Rev. 62, 1094–156 (1998).

  • 57.

    Cecchini, K. R., Gorton, T. S. & Geary, S. J. Transcriptional responses of Mycoplasma gallisepticum strain R in association with eukaryotic cells. J. Bacteriol. 189, 5803–5807, https://doi.org/10.1128/JB.00667-07 (2007).

  • 58.

    Hybiske, K. & Stephens, R. S. Exit strategies of intracellular pathogens. Nat. Rev. Microbiol. 6, 99–110 (2008).

  • 59.

    Hybiske, K. & Stephens, R. S. Mechanisms of host cell exit by the intracellular bacterium. Chlamydia. Proc. Natl. Acad. Sci. USA 104, 11430–11435 (2007).

  • 60.

    Lai, X. H., Golovliov, I. & Sjöstedt, A. Francisella tularensis induces cytopathogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication. Infect. Immun. 69, 4691–4694 (2001).

  • 61.

    Yoshida, S. et al. Microtubule-severing activity of Shigella is pivotal for intercellular spreading. Science 314, 985–989 (2006).

  • 62.

    Robbins, J. R. et al. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell Biol. 146, 1333–1349 (1999).

  • 63.

    Hopfe, M., Deenen, R., Degrandi, D., Köhrer, K. & Henrich, B. Host cell responses to persistent mycoplasmas – different stages in infection of HeLa cells with Mycoplasma hominis. Plos one 8, e54219 (2013).

  • 64.

    Bischofberger, M., Iacovache, I. & van der Goot, F. G. Pathogenic pore-forming proteins: function and host response. Cell Host Microbe 12, 266–275 (2012).

  • 65.

    Zahrt, T. C. Molecular mechanisms regulating persistent Mycobacterium tuberculosis infection. Microbes Infect. 5, 159–167 (2003).

  • 66.

    Shames, S. R. et al. The pathogenic E. coli type III effector EspZ interacts with host CD98 and facilitates host cell prosurvival signalling. Cell. Microbiol. 12, 1322–1339 (2010).

  • 67.

    Roxas, J. L. et al. The enteropathogenic Escherichia coli-secreted protein EspZ inhibits host cell apoptosis. Infect. Immun. 80, 3850–3857 (2012).

  • 68.

    Koziel, J. et al. The role of Mcl-1 in S. aureus-induced cytoprotection of infected macrophages. Mediators Inflamm. 2013, 427021 (2013).

  • 69.

    Logunov, D. Y. et al. Mycoplasma infection suppresses p53, activates NF-kappaB and cooperates with oncogenic Ras in rodent fibroblast transformation. Oncogene 27, 4521–4531 (2008).

  • 70.

    Feng, S. H., Tsai, S., Rodriguez, J. & Lo, S. C. Mycoplasmal infections prevent apoptosis and induce malignant transformation of interleukin-3-dependent 32D hematopoietic cells. Mol. Cell. Biol. 19, 7995–8002 (1999).

  • 71.

    Xu, J. et al. Mycoplasma gallisepticum MGA_0676 is a membrane-associated cytotoxic nuclease with a staphylococcal nuclease region essential for nuclear translocation and apoptosis induction in chicken cells. Appl. Microbiol. Biotechnol. 99, 1859–1871 (2014).

  • 72.

    Gerlic, M., Horowitz, J., Farkash, S. & Horowitz, S. The inhibitory effect of Mycoplasma fermentans on tumour necrosis factor (TNF)-alpha-induced apoptosis resides in the membrane lipoproteins. Cell. Microbiol. 9, 142–153 (2007).

  • 73.

    Bischof, D. F., Janis, C., Vilei, E. M., Bertoni, G. & Frey, J. Cytotoxicity of Mycoplasma mycoides subsp. mycoides small colony type to bovine epithelial cells. Infect. Immun. 76, 263–269, https://doi.org/10.1128/IAI.00938-07 (2008).

  • 74.

    Rottem, S. Invasion of Mycoplasmas and Fusion with Host Cells. Molecular Biology and Pathogenicity of Mycoplasmas (Kluwer Academic, 2002).

  • 75.

    R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing 1 (2011).

  • 76.

    Wickham, H. Ggplot2. Elegant Graphics for Data Analysis, https://doi.org/10.1007/978-0-387-98141-3 (2009).


  • Source: Ecology - nature.com

    Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific

    On Earth Day, lessons from Covid-19 pandemic offer hope