in

Global CO2 emissions from dry inland waters share common drivers across ecosystems

  • 1.

    Bolpagni, R., Folegot, S., Laini, A. & Bartoli, M. Role of ephemeral vegetation of emerging river bottoms in modulating CO2 exchanges across a temperate large lowland river stretch. Aquat. Sci. 79, 149–158 (2017).

  • 2.

    Gilbert, P. J., Cooke, D. A., Deary, M., Taylor, S. & Jeffries, M. J. Quantifying rapid spatial and temporal variations of CO2 fluxes from small, lowland freshwater ponds. Hydrobiologia 793, 83–93 (2017).

  • 3.

    Jin, H. et al. Enhanced greenhouse gas emission from exposed sediments along a hydroelectric reservoir during an extreme drought event. Environ. Res. Lett. 11, 124003 (2016).

  • 4.

    Micklin, P. The future Aral Sea: hope and despair. Environ. Earth Sci. 75, 844 (2016).

  • 5.

    Khazaei, B. et al. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. J. Hydrol. 569, 203–217 (2019).

  • 6.

    Flaim, G., Nishri, A., Camin, F., Corradini, S. & Obertegger, U. Shift from nival to pluvial recharge of an aquifer-fed lake increases water temperature. Inland Waters 9, 261–274 (2019).

  • 7.

    Larned, S. T., Datry, T., Arscott, D. B. & Tockner, K. Emerging concepts in temporary-river ecology. Freshw. Biol. 55, 717–738 (2010).

    • Article
    • Google Scholar
  • 8.

    Wurtsbaugh, W. A. et al. Decline of the world’s saline lakes. Nat. Geosci. 10, 816–821 (2017).

  • 9.

    Beaulieu, J. J. et al. Effects of an experimental water-level drawdown on methane emissions from a eutrophic reservoir. Ecosystems 21, 657–674 (2018).

  • 10.

    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).

  • 11.

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

  • 12.

    Marcé, R. et al. Emissions from dry inland waters are a blind spot in the global carbon cycle. Earth-Sci. Rev. 188, 240–248 (2019).

  • 13.

    Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185 (2007).

  • 14.

    DelSontro, T., Beaulieu Jake, J. & Downing John, A. Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnol. Oceanogr. Lett. 3, 64–75 (2018).

  • 15.

    Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

  • 16.

    Gómez-Gener, L. et al. When water vanishes: magnitude and regulation of carbon dioxide emissions from dry temporary streams. Ecosystems 19, 710–723 (2016).

  • 17.

    Obrador, B. et al. Dry habitats sustain high CO2 emissions from temporary ponds across seasons. Sci. Rep. 8, 3015 (2018).

  • 18.

    Catalan, N. et al. Carbon dioxide efflux during the flooding phase of temporary ponds. Limnetica 33, 349–359 (2014).

    • Google Scholar
  • 19.

    von Schiller, D. et al. Carbon dioxide emissions from dry watercourses. Inland Waters 4, 377–382 (2014).

    • Article
    • Google Scholar
  • 20.

    Deemer, B. R. et al. Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience 66, 949–964 (2016).

    • Article
    • Google Scholar
  • 21.

    Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).

  • 22.

    Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2013).

  • 23.

    Fromin, N. et al. Impact of seasonal sediment desiccation and rewetting on microbial processes involved in greenhouse gas emissions. Ecohydrology 3, 339–348 (2010).

  • 24.

    Cole, J. J. & Caraco, N. F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 43, 647–656 (1998).

  • 25.

    Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014).

    • Article
    • Google Scholar
  • 26.

    Gómez-Gener, L. et al. Hot spots for carbon emissions from Mediterranean fluvial networks during summer drought. Biogeochemistry 125, 409–426 (2015).

  • 27.

    Steward, A. L., von Schiller, D., Tockner, K., Marshall, J. C. & Bunn, S. E. When the river runs dry: human and ecological values of dry riverbeds. Front. Ecol. Environ. 10, 202–209 (2012).

    • Article
    • Google Scholar
  • 28.

    Arce, M. I. et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth-Sci. Rev. 188, 441–453 (2019).

  • 29.

    Cable, J. M., Ogle, K., Williams, D. G., Weltzin, J. F. & Huxman, T. E. Soil texture drives responses of soil respiration to precipitation pulses in the Sonoran desert: implications for climate change. Ecosystems 11, 961–979 (2008).

    • Article
    • Google Scholar
  • 30.

    Larionova, A. A., Sapronov, D. V., Lopez de Gerenyu, V. O., Kuznetsova, L. G. & Kudeyarov, V. N. Contribution of plant root respiration to the CO2 emission from soil. Eurasia. Soil Sci. 39, 1127–1135 (2006).

  • 31.

    Ma, J., Wang, Z.-Y., Stevenson, B. A., Zheng, X.-J. & Li, Y. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils. Sci. Rep. 3, 2025 (2013).

  • 32.

    Martinsen, K. T., Kragh, T. & Sand-Jensen, K. Carbon dioxide fluxes of air-exposed sediments and desiccating ponds. Biogeochemistry 144, 165–180 (2019).

  • 33.

    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).

  • 34.

    Manzoni, S., Schimel, J. P. & Porporato, A. Responses of soil microbial communities to water stress: results from a meta-analysis. Ecology 93, 930–938 (2012).

  • 35.

    Marcé, R. et al. Carbonate weathering as a driver of CO2 supersaturation in lakes. Nat. Geosci. 8, 107–111 (2015).

  • 36.

    Rey, A. Mind the gap: non-biological processes contributing to soil CO2 efflux. Glob. Change Biol. 21, 1752–1761 (2015).

  • 37.

    von Schiller, D. et al. Sediment respiration pulses in intermittent rivers and ephemeral streams. Glob. Biogeochem. Cycles 33, 1251–1263 (2019).

  • 38.

    Datry, T. et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat. Geosci. 11, 497–503 (2018).

  • 39.

    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

  • 40.

    Wang, J. et al. Recent global decline in endorheic basin water storages. Nat. Geosci. 11, 926–932 (2018).

  • 41.

    Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P. & Regnier, P. A. G. Spatial patterns in CO2 evasion from the global river network. Glob. Biogeochem. Cycles 29, 534–554 (2015).

  • 42.

    Kosten, S. et al. Extreme drought boosts CO2 and CH4 emissions from reservoir drawdown areas. Inland Waters 8, 329–340 (2018).

  • 43.

    Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).

  • 44.

    Wang, H., Lu, J., Wang, W., Yang, L. & Yin, C. Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China. J. Geophys. Res. Atmos. 111, D17109 (2006).

  • 45.

    Arce, M. I. et al. Drying and rainfall shape the structure and functioning of nitrifying microbial communities in riverbed sediments. Front. Microbiol. 9, 2794 (2018).

  • 46.

    Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci. 111, 13894–13899 (2014).

  • 47.

    Allan, J. D. & Castillo, M. M. Stream Ecology: Structure and Function of Running Waters (Springer, Netherlands, 2007).

  • 48.

    Hayes, N. M., Deemer, B. R., Corman, J. R., Razavi, N. R. & Strock, K. E. Key differences between lakes and reservoirs modify climate signals: a case for a new conceptual model. Limnol. Oceanogr. Lett. 2, 47–62 (2017).

    • Article
    • Google Scholar
  • 49.

    Downing, J. A. & Duarte, C. M. Abundance and size distribution of lakes, ponds and impoundments. in encyclopedia of inland waters 469–478 (Elsevier, 2009).

  • 50.

    Lesmeister, L. & Koschorreck, M. A closed-chamber method to measure greenhouse gas fluxes from dry aquatic sediments. Atmos. Meas. Tech. 10, 2377–2382 (2017).

  • 51.

    Food and Agriculture Organization (FAO). Soil texture.

  • 52.

    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).

    • Article
    • Google Scholar
  • 53.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    • Article
    • Google Scholar
  • 54.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • 55.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).


  • Source: Ecology - nature.com

    Effect of precipitation on respiration of different reconstructed soils

    Abundant nitrite-oxidizing metalloenzymes in the mesopelagic zone of the tropical Pacific Ocean