Argos, M. et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376, 252–258 (2010).
Quansah, R. et al. Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ. Health Perspect. 123, 412–421 (2015).
Rosenzweig, M., Pitt, M. & Nazmul Hassan, N. Identifying the costs of a public health success: arsenic well water contamination and productivity in Bangladesh. Rev. Econ. Studies http://ibread.org/bread/system/files/bread_wpapers/546.pdf (2020).
Wasserman, G. A. et al. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 112, 1329–1333 (2004).
Aggarwal, P. K. et al. Isotope hydrology of groundwater in Bangladesh: Implications for characterization and mitigation of arsenic in groundwater, IAEA-TC Project (BGD/8/016). Report No. IAEA-TC Project (BGD/8/016), (International Atomic Energy Agency, 2000).
Ahmed, M. F. et al. Epidemiology—ensuring safe drinking water in Bangladesh. Science 314, 1687–1688 (2006).
BGS/DPHE. Arsenic contamination of groundwater in Bangladesh, BGS echnical Report WC/00/19 (Catalogue No. BGS Technical Report WC/00/19, British Geological Survey and Department of Public Health Engineering, Keyworth, UK, 2001).
DPHE/JICA. Report on Situation Analysis of Arsenic Mitigation, 2009 (Dept. of Public Health Engineering, Local Government Division, Government of Bangladesh and Japan International Cooperation Agency, 2010).
Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M. & Perrin, J. Arsenic in groundwater of the Bengal Basin, Bangladesh: distribution, field relations, and hydrogeological setting. Hydrogeol. J. 13, 727–751 (2005).
Ravenscroft, P. et al. Effectiveness of public rural waterpoints in Bangladesh with special reference to arsenic mitigation. J. Water Sanitation Hyg. Dev. 4, 545–562 (2014).
Ravenscroft, P., McArthur, J. M. & Hoque, M. A. Stable groundwater quality in deep aquifers of Southern Bangladesh: The case against sustainable abstraction. Sci. Total Environ. 454, 627–638 (2013).
Ahmed, F. & Ahmed, T. in Comprehensive Water Quality and Purification. (ed. S. Ahuja) Vol. 1, 104-121 (Elsevier, 2014).
Michael, H. A. & Voss, C. I. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proc. Natl Acad. Sci. USA 105, 8531–8536 (2008).
McMahon, P. B. & Chapelle, F. H. Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. Nature 349, 233–235 (1991).
Erban, L. E., Gorelick, S. M., Zebker, H. A. & Fendorf, S. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proc. Natl Acad. Sci. USA 110, 13751–13756 (2013).
Planer-Friedrich, B. et al. Organic carbon mobilization in a Bangladesh aquifer explained by seasonal monsoon-driven storativity changes. Appl. Geochem. 27, 2324–2334 (2012).
Smith, R., Knight, R. & Fendorf, S. Overpumping leads to California groundwater arsenic threat. Nat. Commun. https://doi.org/10.1038/s41467-018-04475-3 (2018).
Fendorf, S., Michael, H. A. & van Geen, A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328, 1123–1127 (2010).
Horneman, A. et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part 1: evidence from sediment profiles. Geochim. Cosmochim. Acta 68, 3459–3473 (2004).
Islam, F. S. et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430, 68–71 (2004).
McArthur, J. M. et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl. Geochem. https://doi.org/10.1016/j.apgeochem.2004.02.001 (2004).
Nickson, R. et al. Arsenic poisoning of Bangladesh groundwater. Nature 395, 338–338 (1998).
Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G. & Ahmed, K. M. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15, 403–413 (2000).
Dhar, R. K. et al. Microbes enhance mobility of arsenic in pleistocene aquifer sand from Bangladesh. Environ. Sci. Technol. 45, 2648–2654 (2011).
McArthur, J. M. et al. How paleosols influence groundwater flow and arsenic pollution: a model from the Bengal Basin and its worldwide implication. Water Resour. Res. https://doi.org/10.1029/2007wr006552 (2008).
van Geen, A. et al. Retardation of arsenic transport through a Pleistocene aquifer. Nature 501, 204–207 (2013).
van Geen, A. et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part II: evidence from sediment incubations. Geochim. Cosmochim. Acta 68, 3475–3486 (2004).
Harvey, C. F. et al. Arsenic mobility and groundwater extraction in Bangladesh. Science 298, 1602–1606 (2002).
Klump, S. et al. Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environ. Sci. Technol. 40, 243–250 (2006).
Neumann, R. B. et al. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat. Geosci. 3, 46–52 (2010).
Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M. & Fendorf, S. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454, 505–U505 (2008).
Sengupta, S. et al. Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal. Environ. Sci. Technol. 42, 5156–5164 (2008).
van Geen, A. et al. Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin. Environ. Sci. Technol. 42, 2283–2288 (2008).
Mailloux, B. J. et al. Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater. Proc. Natl Acad. Sci. USA 110, 5331–5335 (2013).
Goodbred, S. L. & Kuehl, S. A. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges-Brahmaputra delta. Sediment. Geol. 133, 227–248 (2000).
van Geen, A. et al. Monitoring 51 community wells in Araihazar, Bangladesh, for up to 5 years: implications for arsenic mitigation. J. Environ. Sci. Health Part A Toxic./Hazard. Substances Environ. Eng. 42, 1729–1740 (2007).
Jamil, N. B. et al. Effectiveness of different approaches to arsenic mitigation over 18 years in Araihazar, Bangladesh: implications for National Policy. Environ. Sci. Technol. 53, 5596–5604 (2019).
von Brömssen, M. et al. Targeting low-arsenic aquifers in Matlab Upazila, Southeastern Bangladesh. Sci. Total Environ. 379, 121–132 (2007).
Zheng, Y. et al. Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: implications for deeper aquifers as drinking water sources. Geochim. Cosmochim. Acta 69, 5203–5218 (2005).
Choudhury, I. et al. Evidence for elevated levels of arsenic in public wells of Bangladesh due to improper installation. Ground Water 54, 871–877 (2016).
Khan, M. R. et al. Megacity pumping and preferential flow threaten groundwater quality. Nat. Commun. 7, 12833 (2016).
Knappett, P. S. K. et al. Vulnerability of low-arsenic aquifers to municipal pumping in Bangladesh. J. Hydrol. 539, 674–686 (2016).
Bard, E. et al. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature 345, 405–410 (1990).
Goodbred, S. L. & Kuehl, S. A. Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology 28, 1083–1086 (2000).
Hoque, M. A., McArthur, J. M. & Sikdar, P. K. Sources of low-arsenic groundwater in the Bengal Basin: investigating the influence of the last glacial maximum palaeosol using a 115-km traverse across Bangladesh. Hydrogeol. J. 22, 1535–1547 (2014).
McArthur, J. M. et al. Migration of As, and H-3/(3) He ages, in groundwater from West Bengal: implications for monitoring. Water Res. 44, 4171–4185 (2010).
Hoque, M., Burgess, W. & Ahmed, K. M. Integration of aquifer geology, groundwater flow and arsenic distribution in deltaic aquifers—A unifying concept. Hydrol. Process. 31, 2095–2109 (2017).
Mihajlov, I. et al. Recharge of low-arsenic aquifers tapped by community wells in Araihazar, Bangladesh, inferred from environmental isotopes. Water Resour. Res 52, 3324–3349 (2016).
Mihajlov, I. The vulnerability of low-arsenic aquifers in Bangladesh: a multi-scale geochemical and hydrologic approach PhD Thesis, Columbia University, (2014).
Stute, M. et al. Hydrological control of As concentrations in Bangladesh groundwater. Water Resou. Res. 43, W09417 https://doi.org/10.1029/2005WR004499 (2007).
Radloff, K. A. et al. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Nat. Geosci. 4, 793–798 (2011).
Steckler, M. S. et al. Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) data. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2009jb007018 (2010).
Postma, D. et al. Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim. Cosmochim. Acta 71, 5054–5071, https://doi.org/10.1016/j.gca.2007.08.020 (2007).
Erickson, M. L. & Barnes, R. J. Well characteristics influencing arsenic concentrations in ground water. Water Res. 39, 4029–4039 (2005).
van Geen, A. et al. Spatial variability of arsenic in 6000 tube wells in a 25 km(2) area of Bangladesh. Water Resour. Res. https://doi.org/10.1029/2002wr001617 (2003).
Dhar, R. K. et al. Temporal variability of groundwater chemistry in shallow and deep aquifers of Araihazar, Bangladesh. J. Contaminant Hydrol. 99, 97–111 (2008).
Ali, M. in Groundwater Resources and Development in Bangladesh (eds A. A. Rahman & P. Ravenscroft) 197–219 (The University Press Limited, 2003).
Stookey, L. L. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).
Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C. F. & Hemond, H. F. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ. Sci. Technology 35, 2778–2784 (2001).
Elder, K. L., McNichol, A. P. & Gagnon, A. R. in Proc. 16th International Radiocarbon Conference. 223–230 (Radiocarbon 40, 1997).
Stuiver, M. & Polach, H. A. Reporting of C-14 data—discussion. Radiocarbon 19, 355–363 (1977).
Gran, G. Determination of the equivalence point in potentiometric titrations .2. Analyst 77, 661–671 (1952).
Cheng, Z., Zheng, Y., Mortlock, R. & van Geen, A. Rapid multi-element analysis of groundwater by high-resolution inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-004-2618-x (2004).
Poreda, R. J., Cerling, T. E. & Salomon, D. K. Tritium and helium isotopes as hydrologic tracers in a shallow unconfined aquifer. J. Hydrol. 103, 1–9 (1988).
Schlosser, P., Stute, M., Sonntag, C. & Munnich, K. O. Tritiogenic He-3 in shallow groundwater. Earth Planet. Sci. Lett. 94, 245–256 (1989).
Tolstikhin, I. N. & Kamenski, I. L. Determination of ground-water ages by T-He-3 method. Geochem. Int. 6, 810–811 (1969).
Bayer, R. et al. Performance and blank components of a mass spectrometric system for routine measurement of helium isotopes and tritium by the 3He ingrowth method. 241–279 (Sitzungsberichte (5) der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Jahrgang, 1989).
Clarke, W. B., Jenkins, W. J. & Top, Z. Determination of tritium by mass-spectrometric measurement of He-3. Int. J. Appl. Radiat. Isotopes 27, 515–522 (1976).
Ludin, A. R., Weppernig, R., Boenisch, G. & Schlosser, P. Mass Spectrometric Measurement of Helium Isotopes and Tritium, Internal Report. (Lamont-Doherty Earth Observatory, Palisades, 1997).
van Geen, A. et al. Comparison of two blanket surveys of arsenic in tubewells conducted 12years apart in a 25km2 area of Bangladesh. Sci. Total Environ. 488–489, 484–492 (2014).
Source: Ecology - nature.com