in

Arsenic contamination of Bangladesh aquifers exacerbated by clay layers

  • 1.

    Argos, M. et al. Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376, 252–258 (2010).

  • 2.

    Quansah, R. et al. Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ. Health Perspect. 123, 412–421 (2015).

  • 3.

    Rosenzweig, M., Pitt, M. & Nazmul Hassan, N. Identifying the costs of a public health success: arsenic well water contamination and productivity in Bangladesh. Rev. Econ. Studies http://ibread.org/bread/system/files/bread_wpapers/546.pdf (2020).

  • 4.

    Wasserman, G. A. et al. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 112, 1329–1333 (2004).

  • 5.

    Aggarwal, P. K. et al. Isotope hydrology of groundwater in Bangladesh: Implications for characterization and mitigation of arsenic in groundwater, IAEA-TC Project (BGD/8/016). Report No. IAEA-TC Project (BGD/8/016), (International Atomic Energy Agency, 2000).

  • 6.

    Ahmed, M. F. et al. Epidemiology—ensuring safe drinking water in Bangladesh. Science 314, 1687–1688 (2006).

  • 7.

    BGS/DPHE. Arsenic contamination of groundwater in Bangladesh, BGS echnical Report WC/00/19 (Catalogue No. BGS Technical Report WC/00/19, British Geological Survey and Department of Public Health Engineering, Keyworth, UK, 2001).

  • 8.

    DPHE/JICA. Report on Situation Analysis of Arsenic Mitigation, 2009 (Dept. of Public Health Engineering, Local Government Division, Government of Bangladesh and Japan International Cooperation Agency, 2010).

  • 9.

    Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M. & Perrin, J. Arsenic in groundwater of the Bengal Basin, Bangladesh: distribution, field relations, and hydrogeological setting. Hydrogeol. J. 13, 727–751 (2005).

  • 10.

    Ravenscroft, P. et al. Effectiveness of public rural waterpoints in Bangladesh with special reference to arsenic mitigation. J. Water Sanitation Hyg. Dev. 4, 545–562 (2014).

    • Article
    • Google Scholar
  • 11.

    Ravenscroft, P., McArthur, J. M. & Hoque, M. A. Stable groundwater quality in deep aquifers of Southern Bangladesh: The case against sustainable abstraction. Sci. Total Environ. 454, 627–638 (2013).

  • 12.

    Ahmed, F. & Ahmed, T. in Comprehensive Water Quality and Purification. (ed. S. Ahuja) Vol. 1, 104-121 (Elsevier, 2014).

  • 13.

    Michael, H. A. & Voss, C. I. Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin. Proc. Natl Acad. Sci. USA 105, 8531–8536 (2008).

  • 14.

    McMahon, P. B. & Chapelle, F. H. Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. Nature 349, 233–235 (1991).

  • 15.

    Erban, L. E., Gorelick, S. M., Zebker, H. A. & Fendorf, S. Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proc. Natl Acad. Sci. USA 110, 13751–13756 (2013).

  • 16.

    Planer-Friedrich, B. et al. Organic carbon mobilization in a Bangladesh aquifer explained by seasonal monsoon-driven storativity changes. Appl. Geochem. 27, 2324–2334 (2012).

  • 17.

    Smith, R., Knight, R. & Fendorf, S. Overpumping leads to California groundwater arsenic threat. Nat. Commun. https://doi.org/10.1038/s41467-018-04475-3 (2018).

  • 18.

    Fendorf, S., Michael, H. A. & van Geen, A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328, 1123–1127 (2010).

  • 19.

    Horneman, A. et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part 1: evidence from sediment profiles. Geochim. Cosmochim. Acta 68, 3459–3473 (2004).

  • 20.

    Islam, F. S. et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature 430, 68–71 (2004).

  • 21.

    McArthur, J. M. et al. Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengal and its worldwide implications. Appl. Geochem. https://doi.org/10.1016/j.apgeochem.2004.02.001 (2004).

  • 22.

    Nickson, R. et al. Arsenic poisoning of Bangladesh groundwater. Nature 395, 338–338 (1998).

  • 23.

    Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G. & Ahmed, K. M. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 15, 403–413 (2000).

  • 24.

    Dhar, R. K. et al. Microbes enhance mobility of arsenic in pleistocene aquifer sand from Bangladesh. Environ. Sci. Technol. 45, 2648–2654 (2011).

  • 25.

    McArthur, J. M. et al. How paleosols influence groundwater flow and arsenic pollution: a model from the Bengal Basin and its worldwide implication. Water Resour. Res. https://doi.org/10.1029/2007wr006552 (2008).

  • 26.

    van Geen, A. et al. Retardation of arsenic transport through a Pleistocene aquifer. Nature 501, 204–207 (2013).

  • 27.

    van Geen, A. et al. Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part II: evidence from sediment incubations. Geochim. Cosmochim. Acta 68, 3475–3486 (2004).

  • 28.

    Harvey, C. F. et al. Arsenic mobility and groundwater extraction in Bangladesh. Science 298, 1602–1606 (2002).

  • 29.

    Klump, S. et al. Groundwater dynamics and arsenic mobilization in Bangladesh assessed using noble gases and tritium. Environ. Sci. Technol. 40, 243–250 (2006).

  • 30.

    Neumann, R. B. et al. Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nat. Geosci. 3, 46–52 (2010).

  • 31.

    Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M. & Fendorf, S. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454, 505–U505 (2008).

  • 32.

    Sengupta, S. et al. Do ponds cause arsenic-pollution of groundwater in the Bengal Basin? An answer from West Bengal. Environ. Sci. Technol. 42, 5156–5164 (2008).

  • 33.

    van Geen, A. et al. Flushing history as a hydrogeological control on the regional distribution of arsenic in shallow groundwater of the Bengal Basin. Environ. Sci. Technol. 42, 2283–2288 (2008).

  • 34.

    Mailloux, B. J. et al. Advection of surface-derived organic carbon fuels microbial reduction in Bangladesh groundwater. Proc. Natl Acad. Sci. USA 110, 5331–5335 (2013).

  • 35.

    Goodbred, S. L. & Kuehl, S. A. The significance of large sediment supply, active tectonism, and eustasy on margin sequence development: Late Quaternary stratigraphy and evolution of the Ganges-Brahmaputra delta. Sediment. Geol. 133, 227–248 (2000).

  • 36.

    van Geen, A. et al. Monitoring 51 community wells in Araihazar, Bangladesh, for up to 5 years: implications for arsenic mitigation. J. Environ. Sci. Health Part A Toxic./Hazard. Substances Environ. Eng. 42, 1729–1740 (2007).

  • 37.

    Jamil, N. B. et al. Effectiveness of different approaches to arsenic mitigation over 18 years in Araihazar, Bangladesh: implications for National Policy. Environ. Sci. Technol. 53, 5596–5604 (2019).

  • 38.

    von Brömssen, M. et al. Targeting low-arsenic aquifers in Matlab Upazila, Southeastern Bangladesh. Sci. Total Environ. 379, 121–132 (2007).

  • 39.

    Zheng, Y. et al. Geochemical and hydrogeological contrasts between shallow and deeper aquifers in two villages of Araihazar, Bangladesh: implications for deeper aquifers as drinking water sources. Geochim. Cosmochim. Acta 69, 5203–5218 (2005).

  • 40.

    Choudhury, I. et al. Evidence for elevated levels of arsenic in public wells of Bangladesh due to improper installation. Ground Water 54, 871–877 (2016).

  • 41.

    Khan, M. R. et al. Megacity pumping and preferential flow threaten groundwater quality. Nat. Commun. 7, 12833 (2016).

  • 42.

    Knappett, P. S. K. et al. Vulnerability of low-arsenic aquifers to municipal pumping in Bangladesh. J. Hydrol. 539, 674–686 (2016).

  • 43.

    Bard, E. et al. Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals. Nature 345, 405–410 (1990).

  • 44.

    Goodbred, S. L. & Kuehl, S. A. Enormous Ganges-Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology 28, 1083–1086 (2000).

  • 45.

    Hoque, M. A., McArthur, J. M. & Sikdar, P. K. Sources of low-arsenic groundwater in the Bengal Basin: investigating the influence of the last glacial maximum palaeosol using a 115-km traverse across Bangladesh. Hydrogeol. J. 22, 1535–1547 (2014).

  • 46.

    McArthur, J. M. et al. Migration of As, and H-3/(3) He ages, in groundwater from West Bengal: implications for monitoring. Water Res. 44, 4171–4185 (2010).

  • 47.

    Hoque, M., Burgess, W. & Ahmed, K. M. Integration of aquifer geology, groundwater flow and arsenic distribution in deltaic aquifers—A unifying concept. Hydrol. Process. 31, 2095–2109 (2017).

  • 48.

    Mihajlov, I. et al. Recharge of low-arsenic aquifers tapped by community wells in Araihazar, Bangladesh, inferred from environmental isotopes. Water Resour. Res 52, 3324–3349 (2016).

  • 49.

    Mihajlov, I. The vulnerability of low-arsenic aquifers in Bangladesh: a multi-scale geochemical and hydrologic approach PhD Thesis, Columbia University, (2014).

  • 50.

    Stute, M. et al. Hydrological control of As concentrations in Bangladesh groundwater. Water Resou. Res. 43, W09417 https://doi.org/10.1029/2005WR004499 (2007).

  • 51.

    Radloff, K. A. et al. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand. Nat. Geosci. 4, 793–798 (2011).

  • 52.

    Steckler, M. S. et al. Modeling Earth deformation from monsoonal flooding in Bangladesh using hydrographic, GPS, and Gravity Recovery and Climate Experiment (GRACE) data. J. Geophys. Res. Solid Earth https://doi.org/10.1029/2009jb007018 (2010).

  • 53.

    Postma, D. et al. Arsenic in groundwater of the Red River floodplain, Vietnam: controlling geochemical processes and reactive transport modeling. Geochim. Cosmochim. Acta 71, 5054–5071, https://doi.org/10.1016/j.gca.2007.08.020 (2007).

  • 54.

    Erickson, M. L. & Barnes, R. J. Well characteristics influencing arsenic concentrations in ground water. Water Res. 39, 4029–4039 (2005).

  • 55.

    van Geen, A. et al. Spatial variability of arsenic in 6000 tube wells in a 25 km(2) area of Bangladesh. Water Resour. Res. https://doi.org/10.1029/2002wr001617 (2003).

  • 56.

    Dhar, R. K. et al. Temporal variability of groundwater chemistry in shallow and deep aquifers of Araihazar, Bangladesh. J. Contaminant Hydrol. 99, 97–111 (2008).

  • 57.

    Ali, M. in Groundwater Resources and Development in Bangladesh (eds A. A. Rahman & P. Ravenscroft) 197–219 (The University Press Limited, 2003).

  • 58.

    Stookey, L. L. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).

  • 59.

    Keon, N. E., Swartz, C. H., Brabander, D. J., Harvey, C. F. & Hemond, H. F. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ. Sci. Technology 35, 2778–2784 (2001).

  • 60.

    Elder, K. L., McNichol, A. P. & Gagnon, A. R. in Proc. 16th International Radiocarbon Conference. 223–230 (Radiocarbon 40, 1997).

  • 61.

    Stuiver, M. & Polach, H. A. Reporting of C-14 data—discussion. Radiocarbon 19, 355–363 (1977).

    • Article
    • Google Scholar
  • 62.

    Gran, G. Determination of the equivalence point in potentiometric titrations .2. Analyst 77, 661–671 (1952).

  • 63.

    Cheng, Z., Zheng, Y., Mortlock, R. & van Geen, A. Rapid multi-element analysis of groundwater by high-resolution inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. https://doi.org/10.1007/s00216-004-2618-x (2004).

  • 64.

    Poreda, R. J., Cerling, T. E. & Salomon, D. K. Tritium and helium isotopes as hydrologic tracers in a shallow unconfined aquifer. J. Hydrol. 103, 1–9 (1988).

  • 65.

    Schlosser, P., Stute, M., Sonntag, C. & Munnich, K. O. Tritiogenic He-3 in shallow groundwater. Earth Planet. Sci. Lett. 94, 245–256 (1989).

  • 66.

    Tolstikhin, I. N. & Kamenski, I. L. Determination of ground-water ages by T-He-3 method. Geochem. Int. 6, 810–811 (1969).

    • Google Scholar
  • 67.

    Bayer, R. et al. Performance and blank components of a mass spectrometric system for routine measurement of helium isotopes and tritium by the 3He ingrowth method. 241–279 (Sitzungsberichte (5) der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Jahrgang, 1989).

  • 68.

    Clarke, W. B., Jenkins, W. J. & Top, Z. Determination of tritium by mass-spectrometric measurement of He-3. Int. J. Appl. Radiat. Isotopes 27, 515–522 (1976).

  • 69.

    Ludin, A. R., Weppernig, R., Boenisch, G. & Schlosser, P. Mass Spectrometric Measurement of Helium Isotopes and Tritium, Internal Report. (Lamont-Doherty Earth Observatory, Palisades, 1997).

  • 70.

    van Geen, A. et al. Comparison of two blanket surveys of arsenic in tubewells conducted 12years apart in a 25km2 area of Bangladesh. Sci. Total Environ. 488–489, 484–492 (2014).


  • Source: Ecology - nature.com

    Kerry Emanuel elected a Royal Society foreign member

    Publisher Correction: Intensive farming drives long-term shifts in avian community composition