Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).
Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).
Walter Anthony, K. M., Anthony, P., Grosse, G. & Chanton, J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat. Geosci. 5, 419–426 (2012).
McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).
AMAP Assessment 2015: Methane as an Arctic Climate Forcer (AMAP, 2015).
Bruhwiler, L. et al. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys. 14, 8269–8293 (2014).
Rigby, M. et al. Role of atmospheric oxidation in recent methane growth. Proc. Natl Acad. Sci. USA 114, 5373–5377 (2017).
Thornton, B. F., Wik, M. & Crill, P. M. Double-counting challenges the accuracy of high-latitude methane inventories. Geophys. Res. Lett. 43, 12569–12577 (2016).
Jørgensen, C. J., Lund, K. M. J., Westergaard‐Nielsen, A. & Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 8, 20–23 (2015).
Peltola, O. et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 11, 1263–1289 (2019).
Mastepanov, M. et al. Large tundra methane burst during onset of freezing. Nature 456, 628–630 (2008).
Wik, M., Crill, P. M., Varner, R. K. & Bastviken, D. Multiyear measurements of ebullitive methane flux from three subarctic lakes. J. Geophys. Res. Biogeosci. 118, 1307–1321 (2013).
Walter Anthony, K. M. & Anthony, P. Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models. J. Geophys. Res. Biogeosci. 118, 1015–1034 (2013).
Lehner, B. & Dőll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).
Paltan, H., Dash, J. & Edwards, M. A refined mapping of Arctic lakes using Landsat imagery. Int. J. Remote Sens. 36, 5970–5982 (2015).
Lindgren, P. R., Grosse, G., Walter Anthony, K. M. & Meyer, F. J. Detection and spatiotemporal analysis of methane ebullition on thermokarst lake ice using high-resolution optical aerial imagery. Biogeosciences 13, 27–44 (2016).
Engram, M., Anthony, K. W., Meyer, F. J. & Grosse, G. Synthetic aperture radar (SAR) backscatter response from methane ebullition bubbles trapped by thermokarst lake ice. Can. J. Remote Sens. 38, 667–682 (2013).
Walter Anthony, K. M. et al. Estimating methane emissions from northern lakes using ice-bubble surveys. Limnol. Oceanogr. Methods 8, 592–609 (2010).
Rasilo, T., Prairie, Y. T. & del Giorgio, P. A. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions. Glob. Change Biol. 21, 1124–1139 (2015).
Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, GB4009 (2004).
Kessler, M. A., Plug, L. J. & Walter Anthony, K. M. Simulating the decadal- to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J. Geophys. Res. 117, G00M06 (2012).
Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).
Walter Anthony, K. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).
Aben, R. C. H. et al. Cross continental increase in methane ebullition under climate change. Nat. Commun. 8, 1682 (2017).
Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).
Saunois, M. et al. The global methane budget: 2000–2012. Earth Syst. Sci. Data Discuss. 8, 54–81 (2016).
Arp, C. D. et al. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate. Geophys. Res. Lett. 43, 6358–6365 (2016).
Engram, M., Arp, C. D., Jones, B. M., Ajadi, O. A. & Meyer, F. J. Analyzing floating and bedfast lake ice regimes across Arctic Alaska using 25 years of space-borne SAR imagery. Remote Sens. Environ. 209, 660–676 (2018).
Surdu, C. M., Duguay, C. R., Brown, L. C. & Fernández Prieto, D. Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis. Cryosphere 8, 167–180 (2014).
DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P. A. & Prairie, Y. T. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnol. Oceanogr. 61, S62–S77 (2016).
Weeks, W. F., Fountain, A. G., Bryan, M. L. & Elachi, C. Differences in radar return from ice-covered North Slope lakes. J. Geophys. Res. 83, 4069–4073 (1978).
Jeffries, M. O., Morris, K., Weeks, W. F. & Wakabayashi, H. Structural and stratigraphic features and ERS-1 synthetic-aperture radar backscatter characteristics of ice growing on shallow lakes in NW Alaska, winter 1991–1992. J. Geophys. Res. Oceans 99, 22459–22471 (1994).
Hall, D. K., Fagre, D. B., Klasner, F., Linebaugh, G. & Liston, G. E. Analysis of ERS-1 synthetic-aperture-radar data of frozen lakes in northern Montana and implications for climate studies. J. Geophys. Res. Oceans 99, 22473–22482 (1994).
Mellor, J. Bathymetry of Alaskan Arctic Lakes: A Key to Resource Inventory with Remote Sensing Methods. PhD thesis, Institute of Marine Science, University of Alaska Fairbanks (1982).
Duguay, C. R., Pultz, T. J., Lafleur, P. M. & Drai, D. RADARSAT backscatter characteristics of ice growing on shallow sub-Arctic lakes, Churchill, Manitoba, Canada. Hydrol. Process. 16, 1631–1644 (2002).
Walter, K. M., Engram, M., Duguay, C. R., Jeffries, M. O. & Chapin, F. S. The potential use of synthetic aperture radar for estimating methane ebullition from Arctic lake. J. Am. Water Resour. Assoc. 44, 305–315 (2008).
Lee, J.-S. & Pottier, E. in Polarimetric Radar Imaging: From Basics to Applications Vol. 1 (eds Lee, J.-S. & Pottier, E.) 265–299 (CRC Press Taylor & Francis Group, 2009).
Leconte, R. et al. A controlled experiment to retrieve freshwater ice characteristics from an FM-CW radar system. Cold Reg. Sci. Technol. 55, 212–220 (2009).
Scandella, B. P., Varadharajan, C., Hemond, H. F., Ruppel, C. & Juanes, R. A conduit dilation model of methane venting from lake sediments. Geophys. Res. Lett. 38, L06408 (2011).
Greene, S., Walter Anthony, K. M., Archer, D., Sepulveda-Jauregui, A. & Martinez-Cruz, K. Modeling the impediment of methane ebullition bubbles by seasonal lake ice. Biogeosciences 11, 6791–6811 (2014).
Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006).
Walter, K. M., Chanton, J. P., Chapin, F. S., Schuur, E. A. G. & Zimov, S. A. Methane production and bubble emissions from Arctic lakes: isotopic implications for source pathways and ages. J. Geophys. Res. Biogeosci. 113, G00A08 (2008).
Zimov, S. A. et al. in Permafrost Response on Economic Development, Environmental Security and Natural Resources, NATO Science Series, Vol. 76 (eds Paepe, R. & Melnikov, V.) 511–524 (Springer, 2001).
Engram, M., Anthony, K. W., Meyer, F. J. & Grosse, G. Characterization of L-band synthetic aperture radar (SAR) backscatter from floating and grounded thermokarst lake ice in Arctic Alaska. Cryosphere 7, 1741–1752 (2013).
Serafimovich, A. et al. Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions. Atmos. Chem. Phys. 18, 10007–10023 (2018).
Hartmann, J., Gehrmann, M., Kohnert, K., Metzger, S. & Sachs, T. New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns. Atmos. Meas. Tech. 11, 4567–4581 (2018).
Aubinet., M., Vesala, T. & Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis (Springer Science & Business Media, 2012).
Foken, T. & Napo, C. J. Micrometeorology (Springer, 2008).
Metzger, S. et al. Spatially explicit regionalization of airborne flux measurements using environmental response functions. Biogeosciences 10, 2193–2217 (2013).
Kljun, N., Calanca, P., Rotach, M. W. & Schmid, H. P. A simple parameterisation for flux footprint predictions. Bound. Layer Meteorol. 112, 503–523 (2004).
Metzger, S. et al. Eddy-covariance flux measurements with a weight-shift microlight aircraft. Atmos. Meas. Tech. 5, 1699–1717 (2012).
Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).
Skamarock, W. C. et al. A Description of the Advanced Research WRF Version 3 NCAR Technical Note NCAR/TN-475+STR (UCAR, 2008).
Jones, B. M. & Grosse, G. Western Arctic Coastal Plain, Lakes and Drainage Gradients (Arctic Landscape Conservation Cooperative, 2013); http://arcticlcc.org/products/spatial-data/show/western-arctic-coastal-plain-lakes-and-drainage-gradients
Engram, M., Walter Anthony, K. M., & Meyer, F.J. SAR-based Lake Ebullition Estimates for Five Alaska Regions (Oak Ridge National Laboratory NASA Distributed Active Archive Center, 2020); https://doi.org/10.3334/ORNLDAAC/1790
Source: Ecology - nature.com