in

Urban biodiversity management using evolutionary tools

  • 1.

    Dearborn, D. C. & Kark, S. Motivations for conserving urban biodiversity. Conserv. Biol. 24, 432–449 (2009).

  • 2.

    Shaffer, H. B. Urban biodiversity arks. Nat. Sustain. 1, 725–727 (2018).

    • Article
    • Google Scholar
  • 3.

    Soanes, K. et al. Correcting common misconceptions to inspire conservation action in urban environments. Conserv. Biol. 33, 300–306 (2019).

  • 4.

    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).

    • Article
    • Google Scholar
  • 5.

    Donihue, C. M. & Lambert, M. R. Adaptive evolution in urban ecosystems. Ambio 44, 94–203 (2014).

    • Google Scholar
  • 6.

    Alberti, M. Eco-evolutionary dynamics in an urbanizing planet. Trends Ecol. Evol. 30, 114–126 (2015).

  • 7.

    Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2018).

  • 8.

    Reid, N. M. et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354, 1305–1308 (2016).

  • 9.

    Brans, K. I. et al. The heat is on: genetic adaptation to urbanization mediated by thermal tolerance and body size. Glob. Change Biol. 23, 5218–5227 (2017).

    • Article
    • Google Scholar
  • 10.

    Brans, K. I. et al. Urbanization drives genetic differentiation in physiology and structures the evolution of pace-of-life syndromes in the water flea Daphnia magna. Proc. R. Soc. B 285, 20180169 (2018).

  • 11.

    Diamond, S. E. et al. Evolution of plasticity in the city: urban acorn ants can better tolerate more rapid increases in environmental temperature. Conserv. Physiol. 6, coy030 (2018).

  • 12.

    Diamond, S. E. et al. Evolution of thermal tolerance and its fitness consequences: parallel and non-parallel responses to urban heat islands across three cities. Proc. R. Soc. B 285, 20180036 (2018).

  • 13.

    Cheptou, P.-O. et al. Rapid evolution of seed dispersal in an urban environment in the weed. Crepis sancta. Proc. Natl Acad. Sci. USA 105, 3796–3799 (2008).

  • 14.

    Gorton, A. J. et al. Little plant, big city: a test of adaptation to urban environments in common ragweed (Ambrosia artemisiifolia). Proc. R. Soc. B 285, 20180968 (2018).

  • 15.

    Kern, E. M. A. & Langerhans, R. B. Urbanization drives contemporary evolution in stream fish. Glob. Change Biol. 24, 3791–3802 (2018).

    • Article
    • Google Scholar
  • 16.

    Schell, C. J. Urban evolutionary ecology and the potential benefits of implementing genomics. J. Hered. 109, 138–151 (2018).

  • 17.

    De León, L. F. et al. Urbanization erodes niche segregation in Darwin’s finches. Evol. Appl. 12, 1329–1343 (2018).

  • 18.

    Schilthuizen, M. Darwin Comes to Town: How the Urban Jungle Drives Evolution (Macmillan, 2018).

  • 19.

    Koerner, B. I. How Cities Reshape the Evolutionary Path of Urban Wildlife (Wired, 2019).

  • 20.

    Hendry, A. P. & Kinnison, M. T. The pace of modern life: measuring rates of contemporary microevolution. Evolution 53, 1637–1653 (1999).

  • 21.

    Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).

    • Article
    • Google Scholar
  • 22.

    Li, E. et al. An urban biodiversity assessment framework that combines an urban habitat classification scheme and citizen science data. Front. Ecol. Evol. 7, 277 (2019).

  • 23.

    Derry, A. M. et al. Conservation through the lens of (mal)adaptation: concepts and meta-analysis. Evol. Appl. 12, 1287–1304 (2019).

  • 24.

    Urban, M. C., Tewksbury, J. J. & Sheldon, K. S. On a collision course: competition and dispersal differences create no-analogue communities and cause extinctions during climate change. Proc. R. Soc. B 279, 2072–2080 (2012).

  • 25.

    Merilä, J. & Hendry, A. P. Climate Change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

  • 26.

    Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl Acad. Sci. USA 114, 8951–8956 (2017).

  • 27.

    Diamond, S. E., Chick, L., Perez, A., Strickler, S. A. & Martin, R. A. Rapid evolution of ant thermal tolerance across an urban-rural temperature cline. Biol. J. Linnean Soc. 121, 248–257 (2017).

    • Article
    • Google Scholar
  • 28.

    Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. B 205, 581–598 (1979).

    • CAS
    • Google Scholar
  • 29.

    Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).

  • 30.

    Littleford-Colquhoun, B. L., Clemente, C., Whiting, M. J., Ortiz-Barrientos, D. & Frere, C. H. Archipelagos of the Anthropocene: rapid and extensive differentiation of native terrestrial vertebrates in a single metropolis. Mol. Ecol. 26, 2466–2481 (2017).

  • 31.

    Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi-South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol. Ecol. 28, 4138–4151 (2019).

  • 32.

    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

  • 33.

    Munshi-South, J., Zolnik, C. P. & Harris, S. E. Population genomics of the Anthropocene: urbanization is negatively associated with genome-wide variation in white-footed mouse populations. Evol. Appl. 9, 546–564 (2016).

  • 34.

    Combs, M. et al. Spatial population genomics of the brown rat (Rattus norvegicus) in New York City. Mol. Ecol. 27, 83–98 (2017).

  • 35.

    Richardson, J. L. et al. Significant genetic impacts accompany an urban rat control campaign in Salvador, Brazil. Front. Ecol. Evol. 7, 115 (2019).

    • Article
    • Google Scholar
  • 36.

    Combs, M., Byers, K., Himsworth, C. & Munshi-South, J. Harnessing population genetics for pest management: theory and application for urban rats. Hum.-Wildl. Interact. 13, 250–263 (2019).

    • Google Scholar
  • 37.

    Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2009).

  • 38.

    Hostetler, M., Allen, W. & Meurk, C. Conserving urban biodiversity? Creating green infrastructure is only the first step. Landsc. Urban Plan. 100, 369–371 (2011).

    • Article
    • Google Scholar
  • 39.

    Carlson, S. M. et al. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

  • 40.

    Cook, C. N. & Sgrò, C. M. Poor understanding of evolutionary theory is a barrier to effective conservation management. Conserv. Lett. 12, e12619 (2018).

    • Article
    • Google Scholar
  • 41.

    Piersma, T. & Drent, J. Phenotypic plasticity and the evolution of organismal design. Trends Ecol. Evol. 18, 228–233 (2003).

    • Article
    • Google Scholar
  • 42.

    Martin, L. B., Ghalambor, C. K. & Woods, H. A. Integrative Organismal Biology (Wiley-Blackwell, 2015).

  • 43.

    Brander, S. M., Biales, A. D. & Connon, R. E. The role of epigenomics in aquatic toxicology. Environ. Toxicol. Chem. 36, 2565–2573 (2017).

  • 44.

    McNew, S. M. et al. Epigenetic variation between urban and rural populations of Darwin’s finches. BMC Evol. Biol. 17, 183 (2017).

  • 45.

    Hale, R., Swearer, S. E., Sievers, M. & Coleman, R. Balancing biodiversity outcomes and pollution management in urban stormwater treatment wetlands. J. Environ. Man. 233, 302–307 (2019).

    • Article
    • Google Scholar
  • 46.

    Gallagher, M. T. et al. The role of pollutant accumulation in determining the use of stormwater ponds by amphibians. Wetland Ecol. Man. 22, 551–564 (2014).

  • 47.

    Brand, A., Snodgrass, J. W., Gallagher, M. T., Casey, R. E. & Van Meter, R. Lethal and sublethal effects of embryonic and larval exposure of Hyla versicolor to stormwater pond sediments. Arch. Environ. Contam. Toxicol. 58, 325–331 (2010).

  • 48.

    Snodgrass, J. W., Casey, R. E., Joseph, D. & Simon, J. A. Microcosm investigations of stormwater pond sediment toxicity to embryonic and larval amphibians: variation in sensitivity among species. Environ. Pollut. 154, 291–297 (2008).

  • 49.

    Simon, J. A., Snodgrass, J. W., Casey, R. E. & Sparling, D. W. Spatial correlates of amphibian use of constructed wetlands in an urban landscape. Landsc. Ecol. 24, 361–373 (2009).

    • Article
    • Google Scholar
  • 50.

    Holzer, K. A. Amphibian use of constructed and remnant wetlands in an urban landscape. Urban Ecosyst. 17, 955–968 (2014).

    • Article
    • Google Scholar
  • 51.

    Guderyahn, L. B., Smithers, A. P. & Mims, M. C. Assessing habitat requirements of pond-breeding amphibians in a highly urbanized landscape: implications for management. Urban Ecosyst. 19, 1801–1821 (2016).

    • Article
    • Google Scholar
  • 52.

    Holtmann, L., Phillipp, K., Becke, C. & Fartmann, T. Effects of habitat and landscape quality on amphibian assemblages of urban stormwater ponds. Urban Ecosyst. 20, 1249–1259 (2017).

    • Article
    • Google Scholar
  • 53.

    Miles, L. S., Johnson, J. C., Dyer, R. J. & Verrelli, B. C. Urbanization as a facilitator of gene flow in a human health pest. Mol. Ecol. 27, 3219–3230 (2018).

    • Article
    • Google Scholar
  • 54.

    Miles, L. S., Dyer, R. J. & Verrelli, B. C. Urban hubs of connectivity, contrasting patterns of gene flow within and among cities in the western black widow spider. Proc. R. Soc. B 285, 20181224 (2018).

  • 55.

    Shepack, A. et al. Species absence in developed landscapes: an experimental evaluation. Landsc. Ecol. 32, 609–615 (2017).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Kerry Emanuel, David Sabatini, and Peter Shor receive BBVA Frontiers of Knowledge awards

    3 Questions: Harnessing wave power to rebuild islands