in

The use of a natural substrate for immobilization of microalgae cultivated in wastewater

  • 1.

    Hamed, I. The Evolution and Versatility of Microalgal Biotechnology: A Review. Comprehensive Reviews in Food Science and Food Safety 15, 1104–1123 (2016).

    • Article
    • Google Scholar
  • 2.

    Tredici, M. R., Rodolfi, L., Biondi, N., Bassi, N. & Sampietro, G. Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP) plant. Algal Research 19, 253–263 (2016).

    • Article
    • Google Scholar
  • 3.

    Ting, H. et al. Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: A review. International Journal of Agricultural and Biological Engineering 10, 1–29 (2017).

    • Google Scholar
  • 4.

    Fernández, I. et al. Hierarchical Non-linear Control of a Tubular Photobioreactor. IFAC-Papers OnLine 48, 224–229 (2015).

    • Article
    • Google Scholar
  • 5.

    Gupta, P. L., Lee, S.-M. & Choi, H.-J. A mini review: photobioreactors for large scale algal cultivation. World Journal of Microbiology and Biotechnology 31, 1409–1417 (2015).

  • 6.

    Prajapati, S. K., Kaushik, P., Malik, A. & Vijay, V. K. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: Possibilities and challenges. Biotechnology Advances 31, 1408–1425 (2013).

  • 7.

    de Assisa, L. R. et al. Evaluation of the performance of different materials to support the attached growth of algal biomass. Algal Research 39, 101440 (2019).

    • Article
    • Google Scholar
  • 8.

    Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N. & Wijffels, R. H. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilm. Water Research 45, 5925–5933 (2011).

  • 9.

    Garbowski, T., Bawiec, A., Pulikowski, K. & Wiercik, P. Algae proliferation on substrates immersed in biologically treated sewage. Journal of Ecological Engineering 18, 90–98 (2017).

    • Article
    • Google Scholar
  • 10.

    Paniagua-Michel, J. Wastewater Treatment Using Phototrophic–Heterotrophic Biofilms and Microbial Mats, In Tripathi, B. N. & Kumar, D. (Eds.), Prospects and Challenges in Algal Biotechnology (pp. 257–275). Singapore: Springer (2017).

  • 11.

    Jarvis, P., Jefferson, B., Gregory, J. & Parsons, S. A. A review of floc strength and breakage. Water Research 39, 3121–3137 (2005).

  • 12.

    Fettweis, M., Baeye, M., Van der Zande, D., Van den Eynde, D. & Lee, B. J. Seasonality of floc strength in the southern North Sea. Journal of Geophysical Research: Oceans, 119, 1911–1926 (2014).

    • ADS
    • Google Scholar
  • 13.

    Szlauer-Łukaszewska, A. Succession of periphyton developing on artificial substrate immersed in polysaprobic wastewater reservoir. Polish Journal of Environmental Studies 16, 753–762 (2007).

    • Google Scholar
  • 14.

    Sukačová, K., Trtílek, M. & Rataj, T. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Research 71, 55–63 (2015).

    • Article
    • Google Scholar
  • 15.

    D’Imporzano, G., Silvia, S., Davide, V., Barbara, S. & Fabrizio, A. Microalgae Mixotrophic Growth: Opportunity for Stream Depuration and Carbon Recovery, In Tripathi, B. N. & Kumar, D. (Eds.), Prospects and Challenges in Algal Biotechnology (pp. 141–177). Singapore: Springer (2017).

  • 16.

    Dudek, M., Dębowski, M., Zieliński, M. & Nowicka, A. Use of a wastewater after anaerobic pretreatment to microalgae Platymonas subcordiformis growth. Ecological Engineering, 18, 14–20 In Polish (2017).

  • 17.

    Costa, J. A. V. et al. Microalgae-Based Biorefineries as a Promising Approach to Biofuel Production, In B. N. & Tripathi, D. Kumar (Eds.), Prospects and Challenges in Algal Biotechnology (pp. 113–140). Singapore: Springer (2017).

  • 18.

    Marselina, M. & Burhanudin, M. Phosphorus load concentration in tropical climates reservoir for each water quantity class. Journal of Water and Land Development 36, 99–104 (2018).

  • 19.

    Bawiec, A., Garbowski, T., Pawęska, K. & Pulikowski, K. Analysis of the algae growth dynamics in the hydroponic system with LEDs nighttime lighting using the laser granulometry method. Water Air & Soil Pollution 230, 17, https://doi.org/10.1007/s11270-018-4075-8 (2018).

  • 20.

    Burzyńska, I. Monitoring of selected fertilizer nutrients in surface waters and ssoils of agricultural land in the river valley in Central Poland. Journal of Water and Land Development 43, 41–48 (2019).

    • Article
    • Google Scholar
  • 21.

    Kwietniewska, E., Tys, J., Krzemińska, I. & Kozieł, W. Microalgae – cultivation and application of biomass as a source of energy: A review, Acta Agrophys. Monographiae, Instytut Agrofizyki im. Bohdana Dobrzańskiego Polskiej Akademii Nauk, Lublin (Poland), http://produkcja.ipan.lublin.pl/uploads/publishing/files/AAM_2012(2).pdf (2012).

  • 22.

    Boelee, N. C., Temmink, H., Janssen, M., Buisman, C. J. N. & Wijffels, R. H. Scenario Analysis of Nutrient Removal from Municipal Wastewater by Microalgal Biofilms. Water 4, 460–473 (2012).

  • 23.

    Zhang, Q. et al. Cultivation of algal biofilm using different lignocellulosic materials as carriers. Biotechnology for Biofuels 10, 115 (2017). 10.1186%2Fs13068-017-0799-8.

    • Article
    • Google Scholar
  • 24.

    Graham, L. E., Graham, J. E. & Wilcox, L. W. Algae. Second Edition (Benjamin Cummings 1-616 (2009).

  • 25.

    Ji, M.-K. et al. Effect of flue gas CO2 on the growth, carbohydrate and fatty acid composition of a green microalga Scenedesmus obliquus for biofuel production. Environmental Technology 38, 2085–2092 (2017).

  • 26.

    Kowal, A. L. & Świderska-Bróż, M. Oczyszczanie wody (PWN 1-794 In Polish (2007).

  • 27.

    Schulze, P. S. C., Barreira, L. A., Pereira, H. G. C., Perales, J. A. & Varela, J. C. S. Light emitting diodes (LEDs) applied to microalgal production. Trends in Biotechnology 32, 422–430 (2014).

  • 28.

    Blanken, W., Postma, P. R., de Winter, L., Wijffels, R. H. & Janssen, M. Predicting microalgae growth. Algal Research 14, 28–38 (2016).

    • Article
    • Google Scholar
  • 29.

    Garbowski, T. Changes in the Physico-Chemical Parameters of Water as a Result of Long-Term Contact with Biomass, on the Example of Pine Bark (Pinus sylvestris). Water Air & Soil Pollution 230(104), https://doi.org/10.1007/s11270-019-4160-7 (2019).

  • 30.

    Hoek, C. D., Mann, C. G. & Johns, H. M. Alga: an introduction to phycology (Vol. 623). Cambridge: Great Britain at University Press (1995).

  • 31.

    Ettl, H. Xantophyceae. In A Pascher, H. Ettl, J. Gerloff, & H. Heynig (Eds.), Süβwasserflora von Mitteleuropa, 3/1. Stuttgart-New York: Gustaw Fischer (1978).

  • 32.

    Komàrek, J. & Fott, B. Chlorophyceae (Grünalgen). Ordnung: Chlorococcales. In G. Huber-Pestalozzi (Ed.), Das Phytoplankton des Süβwassers 7(1) (pp. 1–1044). Stuttgart: Systematik und Biologie. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart (1983).

  • 33.

    Lokhorst, G. M. Taxonomic study of genus Microspora Thuret (Chlorophyceae) an integrated field, culture and herbarium analysis. Algological Studies 93, 1–38 (1999).

    • Google Scholar
  • 34.

    Komárek, J. & Anagnostidis, K. Cyanoprocaryota; Oscillatoriales II, In A. B. Büdel, L. Krienitz, G. Gärtner, & M. Schagerl (Eds.), Süβwasserflora von Mitteleuropa 19 (Vol. 2., p. 759). Müchen: Spektrum Akademischer Verlag (2005).

  • 35.

    Bąk, M. et al. Klucz do oznaczania okrzemek w fitobentosie na potrzeby oceny stanu ekologicznego wód powierzchniowych w Polsce. Biblioteka Monitoringu Środowiska, 452 In Polish (2012).

  • 36.

    Škaloud, P., Rindi, F., Boedeker, C. & Leliaert, F. (2018). Chlorophyta: Ulvophyceae. In Büdel B., Gärtner G., Krienitz L. & Schagerl M. (Eds.), Süβwasserflora von Mitteleuropa (Vol. 13, p. 288). Berlin: Springer (2012).

  • 37.

    Starmach, K. Methods of Plankton Investigation (Warszawa: Powszechne Wydawnictwo Rolnicze i Leśne 1-105 In Polish (1995).

  • 38.

    Hu, J.-Y. & Sato, T. A photobioreactor for microalgae cultivation with internal illumination considering flashing light effect and optimized light-source arrangement. Energy Conversion and Management 133, 558–565 (2017).

  • 39.

    de Mooij, T., de Vries, G., Latsos, C., Wijffels, R. H. & Janssen, M. Impact of light color on photobioreactor productivity. Algal Research 15, 32–42 (2016).

    • Article
    • Google Scholar
  • 40.

    Gong, Q., Feng, Y., Kang, L., Luo, M. & Yang, J. Effects of Light and pH on Cell Density of Chlorella Vulgaris. Energy Procedia 61, 2012–2015 (2014).

  • 41.

    Aguilera, A., Souza-Egipsy, V., Gómez, F. & Amils, R. Development and Structure of Eukaryotic Biofilms in an Extreme Acidic Environment, Río Tinto (SW, Spain). Microbial Ecology 53, 294–305 (2007).

    • Article
    • Google Scholar
  • 42.

    Pawęska, K., Bawiec, A. & Pulikowski, K. Wastewater treatment in submerged aerated biofilter under condition of high ammonium concentration. Ecological Chemistry and Engineering S 24, 431–442 (2017).

    • Article
    • Google Scholar
  • 43.

    Wiejak, A. Reduction of phosphorus in sewage from household-based sewage treatment plants. Prace Instytutu Techniki Budowlanej, 42, 21-27 In Polish (2013).

  • 44.

    Werkelin, J., Skrifvars, B.-J., Zevenhoven, M., Holmbom, B. & Hupa, M. Chemical forms of ash-forming elements in woody biomass fuels. Fuel 89, 481–493 (2010).

  • 45.

    Vassilev, S. V., Vassileva, C. G. & Vassilev, V. S. Advantages and disadvantages of composition and properties of biomass in comparison with coal: An overview. Fuel 158, 330–350 (2015).

  • 46.

    Wang, B., Lan, C. Q. & Horsman, M. Closed photobioreactors for production of microalgal biomasses. Biotechnology Advances 30, 904–912 (2012).

  • 47.

    Gendrault, S., Bayard, R. & Gourdon, R. Biofiltration onto pine bark for the treatment of water contaminated with atrazine: influence of sorbent on Pseudomonas sp. strain adp. Agronomy for Sustainable Development 25, 317–321 (2005).

  • 48.

    Montes-Atenas, G. & Valenzuela, F. Wastewater Treatment through Low Cost Adsorption Technologies in Physico-Chemical Wastewater Treatment and Resource Recovery (eds. R. Farooq, & Z. Ahmad) (InTech. https://doi.org/10.5772/67097 (2017).

  • 49.

    Litefti, K., Freire, M. S., Stitou, M. & González-Álvarez, J. Adsorption of an anionic dye (Congo red) from aqueous solutions by pine bark. Scientific Reports 9(1), 16530, https://doi.org/10.1038/s41598-019-53046-z (2019).

  • 50.

    Ghosh, R., Barman, S. & Mandal, N.C. Phosphate deficiency induced biofilm formation of Burkholderia on insoluble phosphate granules plays a pivotal role for maximum release of soluble phosphate. Scientific Reports, 9, 5477, doi:10.1038%2Fs41598-019-41726-9 (2019).

  • 51.

    Ghayala, M. S. & Pandyaa, M. T. Microalgae biomass: a renewable source of energy. Energy Procedia 32, 242–250 (2013).

    • Article
    • Google Scholar
  • 52.

    Vassilev, S. V. & Vassileva, C. G. Composition, properties and challenges of algae biomass for biofuel application: An overview. Fuel 181, 1–33 (2016).

  • 53.

    Saber, M., Nakhshiniev, B. & Yoshikawa, K. A review of production and upgrading of algal bio-oil. Renewable and Sustainable Energy Reviews 58, 918–930 (2016).

  • 54.

    Ben, H. et al. A Comprehensive Characterization of Pyrolysis Oil from Softwood Barks. Polymers 11, 1387 (2019).


  • Source: Ecology - nature.com

    Climate knowledge for everyone

    Susan Solomon earns Killian Award, MIT’s highest faculty honor