in

Chemical cues of an invasive turtle reduce development time and size at metamorphosis in the common frog

  • 1.

    Levine, J. M. & D’Antonio, C. M. Forecasting biological invasions with increasing international trade. Conserv. Biol. 17, 322–326 (2003).

    • Article
    • Google Scholar
  • 2.

    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

  • 3.

    Pimentel, D. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. (CRC Press, 2014).

  • 4.

    Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion ecology. (John Wiley & Sons, 2013).

  • 5.

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52, 273–288 (2005).

    • Article
    • Google Scholar
  • 6.

    Pimentel, D., Lach, L., Zuniga, R. & Morrison, D. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50, 53–66 (2000).

    • Article
    • Google Scholar
  • 7.

    Vilà, M. & Hulme, P. E. Impact of biological invasions on ecosystem services. Vol. 12 (Springer, 2017).

  • 8.

    Bucciarelli, G. M., Blaustein, A. R., Garcia, T. S. & Kats, L. B. Invasion complexities: the diverse impacts of nonnative species on amphibians. Copeia 2014, 611–632 (2014).

    • Article
    • Google Scholar
  • 9.

    Nunes, A. L. et al. A global meta-analysis of the ecological impacts of alien species on native amphibians. Proc. R. Soc. Lond. [Biol.] 286, 20182528 (2019).

    • Article
    • Google Scholar
  • 10.

    Gall, B. G. & Mathis, A. Innate predator recognition and the problem of introduced trout. Ethology 116, 47–58 (2010).

    • Article
    • Google Scholar
  • 11.

    Bennett, A. M., Pereira, D. & Murray, D. L. Investment into defensive traits by anuran prey (Lithobates pipiens) is mediated by the starvation-predation risk trade-off. PLoS One 8, e82344 (2013).

  • 12.

    Cadi, A. & Joly, P. Impact of the introduction of the red-eared slider (Trachemys scripta elegans) on survival rates of the European pond turtle (Emys orbicularis). Biodivers. Conserv. 13, 2511–2518 (2004).

    • Article
    • Google Scholar
  • 13.

    Pearl, C. A., Adams, M. J., Schuytema, G. S. & Nebeker, A. V. Behavioral responses of anuran larvae to chemical cues of native and introduced predators in the Pacific Northwestern United States. J. Herpetol. 37, 572–577 (2003).

    • Article
    • Google Scholar
  • 14.

    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. Zool. 68, 619–640 (1990).

    • Article
    • Google Scholar
  • 15.

    Petranka, J. W., Kats, L. B. & Sih, A. Predator-prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish. Anim. Behav. 35, 420–425 (1987).

    • Article
    • Google Scholar
  • 16.

    Lefcort, H. & Eiger, S. M. Antipredatory behaviour of feverish tadpoles: implications for pathogen transmission. Behaviour 126, 13–27 (1993).

    • Article
    • Google Scholar
  • 17.

    Kats, L. B. & Dill, L. M. The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5, 361–394 (1998).

    • Article
    • Google Scholar
  • 18.

    Berec, M., Klapka, V. & Zemek, R. Effect of an alien turtle predator on movement activity of European brown frog tadpoles. Ital. J. Zool. 83, 68–76 (2016).

    • Article
    • Google Scholar
  • 19.

    Lenda, M., Witek, M., Skórka, P., Moroń, D. & Woyciechowski, M. Invasive alien plants affect grassland ant communities, colony size and foraging behaviour. Biol. Invasions 15, 2403–2414 (2013).

    • Article
    • Google Scholar
  • 20.

    Robbins, T. R., Freidenfelds, N. A. & Langkilde, T. Native predator eats invasive toxic prey: evidence for increased incidence of consumption rather than aversion-learning. Biol. Invasions 15, 407–415 (2013).

    • Article
    • Google Scholar
  • 21.

    Márquez-García, A. Z., Campos-Verduzco, R. & Castro-Soriano, B. S. Sedimentología y morfología de la playa de anidación para tortugas marinas, El Carrizal, Coyuca de Benítez, Guerrero. Hidrobiológica 20, 101–112 (2010).

    • Google Scholar
  • 22.

    Gomez-Mestre, I. et al. The shape of things to come: linking developmental plasticity to post‐metamorphic morphology in anurans. J. Evol. Biol. 23, 1364–1373 (2010).

  • 23.

    Goldberg, T., Nevo, E. & Degani, G. Phenotypic plasticity in larval development of six amphibian species in stressful natural environments. Zool. Stud. 51, 345–361 (2012).

    • Google Scholar
  • 24.

    Van Buskirk, J. The costs of an inducible defense in anuran larvae. Ecology 81, 2813–2821 (2000).

    • Article
    • Google Scholar
  • 25.

    Bulen, B. J. & Distel, C. A. Carbaryl concentration gradients in realistic environments and their influence on our understanding of the tadpole food web. Arch. Env. Contam. Toxicol. 60, 343–350 (2011).

  • 26.

    Nunes, A. et al. Antipredator responses of two anurans towards native and exotic predators. Amphibia-Reptilia 32, 341–350 (2011).

    • Article
    • Google Scholar
  • 27.

    Phillips, B. L. & Shine, R. An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia. Proc. R. Soc. Lond. [Biol.] 273, 1545–1550 (2006).

    • Article
    • Google Scholar
  • 28.

    Berthon, K. How do native species respond to invaders? Mechanistic and trait-based perspectives. Biol. Invasions 17, 2199–2211 (2015).

    • Article
    • Google Scholar
  • 29.

    Berchtold, A. Behavioural and physiological responses of prey fish to an invasive predator MSc thesis, Simon Fraser University, (2017).

  • 30.

    Zhang, F., Zhao, J., Zhang, Y., Messenger, K. & Wang, Y. Antipredator behavioral responses of native and exotic tadpoles to novel predator. Asian Herpetol. Res. 6, 51–58 (2015).

    • Google Scholar
  • 31.

    Werner, E. E. Amphibian metamorphosis: growth rate, predation risk, and the optimal size at transformation. Am. Nat. 128, 319–341 (1986).

    • Article
    • Google Scholar
  • 32.

    Relyea, R. A. Getting out alive: how predators affect the decision to metamorphose. Oecologia 152, 389–400 (2007).

  • 33.

    Ernst, C. H. & Lovich, J. E. Turtles of the United States and Canada. (JHU Press, 2009).

  • 34.

    Works, A. J. & Olson, D. H. Diets of two nonnative freshwater turtle species (Trachemys scripta and Pelodiscus sinensis) in Kawai Nui Marsh, Hawaii. J. Herpetol. 52, 444–452 (2018).

    • Article
    • Google Scholar
  • 35.

    Ficetola, G. F., Rödder, D. & Padoa-Schioppa, E. In Handbook of global freshwater invasive species (ed. Francis, R.) 331–339 (Earthscan, Taylor and Francis Group, 2012).

  • 36.

    Kraus, F. Alien reptiles and amphibians: a scientific compendium and analysis. Vol. 4 (Springer, 2009).

  • 37.

    West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).

    • Article
    • Google Scholar
  • 38.

    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).

  • 39.

    Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).

  • 40.

    Banks, P. B. & Dickman, C. R. Alien predation and the effects of multiple levels of prey naiveté. Trends Ecol. Evol. 5, 229–230 (2007).

    • Article
    • Google Scholar
  • 41.

    Hettyey, A. et al. Naive tadpoles do not recognize recent invasive predatory fishes as dangerous. Ecology 97, 2975–2985 (2016).

  • 42.

    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).

    • Article
    • Google Scholar
  • 43.

    Ferrari, M. C., Gonzalo, A., Messier, F. & Chivers, D. P. Generalization of learned predator recognition: an experimental test and framework for future studies. Proc. R. Soc. Lond. [Biol.] 274, 1853–1859 (2007).

    • Article
    • Google Scholar
  • 44.

    Chalcraft, D. R. & Resetarits, W. J. Jr. Predator identity and ecological impacts: functional redundancy or functional diversity? Ecology 84, 2407–2418 (2003).

    • Article
    • Google Scholar
  • 45.

    Sih, A., Englund, G. & Wooster, D. Emergent impacts of multiple predators on prey. Trends Ecol. Evol. 13, 350–355 (1998).

  • 46.

    Soluk, D. A. & Collins, N. C. Synergistic interactions between fish and stoneflies: facilitation and interference among stream predators. Oikos 52, 94–100 (1988).

    • Article
    • Google Scholar
  • 47.

    Stearns, S. C. The evolutionary significance of phenotypic plasticity. Bioscience 39, 436–445 (1989).

    • Article
    • Google Scholar
  • 48.

    Newman, R. A. Adaptive plasticity in amphibian metamorphosis. Bioscience 42, 671–678 (1992).

    • Article
    • Google Scholar
  • 49.

    Semlitsch, R. D. & Caldwell, J. P. Effects of density of growth, metamorphosis, and survivorship in tadpoles of Scaphiopus holbrooki. Ecology 63, 905–911 (1982).

    • Article
    • Google Scholar
  • 50.

    Denver, R. J. Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm. Behav. 31, 169–179 (1997).

  • 51.

    Wilbur, H. M. & Collins, J. P. Ecological aspects of amphibian metamorphosis: nonnormal distributions of competitive ability reflect selection for facultative metamorphosis. Science 182, 1305–1314 (1973).

  • 52.

    Kiesecker, J. M., Chivers, D. P., Anderson, M. & Blaustein, A. R. Effect of predator diet on life history shifts of red-legged frogs, Rana aurora. J. Chem. Ecol. 28, 1007–1015 (2002).

  • 53.

    Laurila, A., Kujasalo, J. & Ranta, E. Predator-induced changes in life history in two anuran tadpoles: effects of predator diet. Oikos 83, 307–317 (1998).

    • Article
    • Google Scholar
  • 54.

    Kurzava, L. M. & Morin, P. J. Tests of functional equivalence: complementary roles of salamanders and fish in community organization. Ecology 79, 477–489 (1998).

    • Article
    • Google Scholar
  • 55.

    Laurila, A. & Kujasalo, J. Habitat duration, predation risk and phenotypic plasticity in common frog (Rana temporaria) tadpoles. J. Anim. Ecol. 68, 1123–1132 (1999).

    • Article
    • Google Scholar
  • 56.

    Boorse, G. C. & Denver, R. J. Acceleration of Ambystoma tigrinum metamorphosis by corticotropin‐releasing hormone. J. Exp. Zool. 293, 94–98 (2002).

  • 57.

    Ruthsatz, K. et al. Endocrine disruption alters developmental energy allocation and performance in Rana temporaria. Integr. Comp. Biol. 59, 70–88 (2019).

  • 58.

    Formanowicz, D. R. Jr. Anuran tadpole/aquatic insect predator-prey interactions: tadpole size and predator capture success. Herpetologica 42, 367–373 (1986).

    • Google Scholar
  • 59.

    Smith, D. C. Factors controlling tadpole populations of the chorus frog (Pseudacris triseriata) on Isle Royale, Michigan. Ecology 64, 501–510 (1983).

    • Article
    • Google Scholar
  • 60.

    Bringsøe, H. In Handbuch der Reptilien und Amphibien Europas Vol. 3/IIIA Schildkröten (Testudines) I. (ed. Fritz, U.) 525–583 (Aula, 2001).


  • Source: Ecology - nature.com

    Susan Solomon earns Killian Award, MIT’s highest faculty honor

    The Role of European Starlings (Sturnus vulgaris) in the Dissemination of Multidrug-Resistant Escherichia coli among Concentrated Animal Feeding Operations