in

The microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities

  • 1.

    Kouzuma A, Watanabe K. Exploring the potential of algae/bacteria interactions. Curr Opin Biotechnol. 2015;33:125–9.

  • 2.

    Eigemann F, Hilt S, Salka I, Grossart H-P. Bacterial community composition associated with freshwater algae: species specificity vs. dependency on environmental conditions and source community. FEMS Microbiol Ecol. 2013;83:650–63.

  • 3.

    Amin SA, Parker MS, Armbrust EV. Interactions between diatoms and bacteria. Microbiol Mol Biol Rev. 2012;76:667–84.

  • 4.

    Cole JJ. Interactions between bacteria and algae in aquatic ecosystems. Annu Rev Ecol Syst. 1982;13:291–314.

    • Google Scholar
  • 5.

    Anesio AM, Laybourn-Parry J. Glaciers and ice sheets as a biome. Trends Ecol Evol. 2012;27:219–25.

    • PubMed
    • Google Scholar
  • 6.

    Berg G, Rybakova D, Grube M, Köberl M. The plant microbiome explored: implications for experimental botany. J Exp Bot. 2016;67:995–1002.

  • 7.

    Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–99.

  • 8.

    Cooper MB, Smith AG. Exploring mutualistic interactions between microalgae and bacteria in the omics age. Curr Opin Plant Biol. 2015;26:147–53.

    • PubMed
    • Google Scholar
  • 9.

    Kim B-H, Ramanan R, Cho D-H, Oh H-M, Kim H-S. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy. 2014;69:95–105.

    • CAS
    • Google Scholar
  • 10.

    Ramanan R, Kang Z, Kim B-H, Cho D-H, Jin L, Oh H-M, et al. Phycosphere bacterial diversity in green algae reveals an apparent similarity across habitats. Algal Res. 2015;8:140–4.

    • Google Scholar
  • 11.

    Croft MT, Warren MJ, Smith AG. Algae need their vitamins. Eukaryot Cell. 2006;5:1175–83.

  • 12.

    Amavizca E, Bashan Y, Ryu C-M, Farag MA, Bebout BM, de-Bashan LE. Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Sci Rep. 2017;7:41310.

  • 13.

    Goecke F, Labes A, Wiese J, Imhoff JF. Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser. 2010;409:267–99.

    • CAS
    • Google Scholar
  • 14.

    Joint I, Tait K, Callow ME, Callow JA, Milton D, Williams P, et al. Cell-to-cell communication across the prokaryote-eukaryote boundary. Science. 2002;298:1207.

    • PubMed
    • Google Scholar
  • 15.

    Brennan L, Owende P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14:557–77.

    • CAS
    • Google Scholar
  • 16.

    Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;10:87–96.

    • Google Scholar
  • 17.

    Fulbright SP, Robbins-Pianka A, Berg-Lyons D, Knight R, Reardon KF, Chisholm ST. Bacterial community changes in an industrial algae production system. Algal Res. 2018;31:147–56.

  • 18.

    Kazamia E, Aldridge DC, Smith AG. Synthetic ecology—a way forward for sustainable algal biofuel production? J Biotechnol. 2012;162:163–9.

    • CAS
    • Google Scholar
  • 19.

    Hardin G. The competitive exclusion principle. Science. 1960;131:1292–7.

  • 20.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    • CAS
    • Google Scholar
  • 21.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.

  • 22.

    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

    • CAS
    • Google Scholar
  • 23.

    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol. 1985;39:783–91.

    • Google Scholar
  • 24.

    Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA. 2004;101:11030–5.

  • 25.

    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 2011;108:4516–22.

  • 26.

    Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations for high-throughput amplicon sequencing. Nat Methods. 2013;10:999–1002.

  • 27.

    Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 2009;4:e6372.

  • 28.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

  • 29.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

  • 30.

    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 2016;4:e2584.

  • 31.

    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Env Microbiol. 2005;71:8228–35.

    • CAS
    • Google Scholar
  • 32.

    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

  • 33.

    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 2010;5:e9490.

  • 34.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

  • 35.

    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.

  • 36.

    Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, et al. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res. 2012;40:W88–95.

  • 37.

    Morohoshi T, Kato M, Fukamachi K, Kato N, Ikeda T. N-Acylhomoserine lactone regulates violacein production in Chromobacterium violaceum type strain ATCC 12472. FEMS Microbiol Lett. 2008;279:124–30.

  • 38.

    McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, et al. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiol Read Engl. 1997;143:3703–11.

    • CAS
    • Google Scholar
  • 39.

    Adam E, Müller H, Erlacher A, Berg G. Complete genome sequences of the Serratia plymuthica strains 3Rp8 and 3Re4-18, two rhizosphere bacteria with antagonistic activity towards fungal phytopathogens and plant growth promoting abilities. Stand Genom Sci. 2016;11:61.

    • Google Scholar
  • 40.

    Gordon SA, Weber RP. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951;26:192–5.

  • 41.

    Krug L, Erlacher A, Berg G, Cernava T. A novel, nature-based alternative for photobioreactor decontaminations. Sci Rep. 2019;9:2864.

  • 42.

    Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger C, Berg G. Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol. 2015;6:138.

  • 43.

    Wassermann B, Cernava T, Müller H, Berg C, Berg G. Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks. Microbiome 2019;7:108.

  • 44.

    Segawa T, Matsuzaki R, Takeuchi N, Akiyoshi A, Navarro F, Sugiyama S, et al. Bipolar dispersal of red-snow algae. Nat Commun. 2018;9:3094.

  • 45.

    Remias D, Lütz-Meindl U, Lütz C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol. 2005;40:259–68.

    • CAS
    • Google Scholar
  • 46.

    Hamilton TL, Havig J. Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest. Geobiology. 2017;15:280–95.

  • 47.

    Seckbach J. Algae and Cyanobacteria in extreme environments. Springer, Dordrecht, The Netherlands; 2007. 786 p.

  • 48.

    Stibal M, Elster J, Šabacká M, Kaštovská K. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol. 2007;59:265–73.

  • 49.

    Bidigare RR, Ondrusek ME, Kennicutt MC, Iturriaga R, Harvey HR, Hoham RW, et al. Evidence a photoprotective for secondary carotenoids of snow algae1. J Phycol. 1993;29:427–34.

    • CAS
    • Google Scholar
  • 50.

    Lutz S, Anesio AM, Field K, Benning LG. Integrated ‘Omics’, targeted metabolite and single-cell analyses of arctic snow algae functionality and adaptability. Front Microbiol. 2015;6:1323.

  • 51.

    Davey MP, Norman L, Sterk P, Huete-Ortega M, Bunbury F, Loh BKW, et al. Snow algae communities in Antarctica: metabolic and taxonomic composition. N. Phytol. 2019;222:1242–55.

    • CAS
    • Google Scholar
  • 52.

    Remias D, Jost S, Boenigk J, Wastian J, Lütz C. Hydrurus-related golden algae (Chrysophyceae) cause yellow snow in polar summer snowfields. Phycol Res. 2013;61:277–85.

    • CAS
    • Google Scholar
  • 53.

    Tanabe Y, Shitara T, Kashino Y, Hara Y, Kudoh S. Utilizing the effective xanthophyll cycle for blooming of Ochromonas smithii and O. itoi (Chrysophyceae) on the snow surface. PLoS ONE. 2011;6:e14690.

  • 54.

    Harding T, Jungblut AD, Lovejoy C, Vincent WF. Microbes in high arctic snow and implications for the cold biosphere. Appl Environ Microbiol. 2011;77:3234–43.

  • 55.

    Margesin R, Spröer C, Zhang D-C, Busse H-J. Polaromonas glacialis sp. nov. and Polaromonas cryoconiti sp. nov., isolated from alpine glacier cryoconite. Int J Syst Evol Microbiol. 2012;62:2662–8.

  • 56.

    Terashima M, Umezawa K, Mori S, Kojima H, Fukui M. Microbial community analysis of colored snow from an alpine snowfield in northern japan reveals the prevalence of betaproteobacteria with snow algae. Front Microbiol. 2017;8:1481.

  • 57.

    Abell GCJ, Bowman JP. Colonization and community dynamics of class Flavobacteria on diatom detritus in experimental mesocosms based on Southern Ocean seawater. FEMS Microbiol Ecol. 2005;53:379–91.

  • 58.

    Brown SP, Olson BJSC, Jumpponen A. Fungi and algae co-occur in snow: an issue of shared habitat or algal facilitation of heterotrophs? Arct Antarct Alp Res. 2015;47:729–49.

    • Google Scholar
  • 59.

    Singh P, Singh SM, Tsuji M, Prasad GS, Hoshino T. Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ålesund, Arctic. Cryobiology. 2014;68:122–8.

  • 60.

    Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S. Fungi in Antarctica. Rev Environ Sci Biotechnol. 2007;6:127–41.

    • Google Scholar
  • 61.

    Buzzini P, Branda E, Goretti M, Turchetti B. Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol. 2012;82:217–41.

  • 62.

    Miller MJ. Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogs. Chem Rev. 1989;89:1563–79.

    • CAS
    • Google Scholar
  • 63.

    Atkin CL, Neilands JB, Phaff HJ. Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J Bacteriol. 1970;103:722–33.

  • 64.

    Ignatova LV, Brazhnikova YV, Berzhanova RZ, Mukasheva TD. Plant growth-promoting and antifungal activity of yeasts from dark chestnut soil. Microbiol Res. 2015;175:78–83.

  • 65.

    Xin G, Glawe D, Doty SL. Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycol Res. 2009;113:973–80.

  • 66.

    Wang K, Sipilä TP, Overmyer K. The isolation and characterization of resident yeasts from the phylloplane of Arabidopsis thaliana. Sci Rep. 2016;6:39403.

  • 67.

    Gómez-Pereira PR, Schüler M, Fuchs BM, Bennke C, Teeling H, Waldmann J, et al. Genomic content of uncultured Bacteroidetes from contrasting oceanic provinces in the North Atlantic Ocean. Environ Microbiol. 2012;14:52–66.

    • PubMed
    • Google Scholar
  • 68.

    Fu H, Jiang P, Zhao J, Wu C. Comparative genomics of Pseudomonas sp. strain SI-3 associated with macroalga Ulva prolifera, the causative species for green tide in the yellow sea. Front Microbiol. 2018;9:1458.

  • 69.

    Kim J, Lyu XM, Lee JJL, Zhao G, Chin SF, Yang L, et al. Metabolomics analysis of Pseudomonas chlororaphis JK12 algicidal activity under aerobic and micro-aerobic culture condition. AMB Express. 2018;8:131.

  • 70.

    Noh SY, Jung SW, Kim BH, Katano T, Han M-S. Algicidal activity of the bacterium, Pseudomonas fluorescens SK09, to mitigate Stephanodiscus hantzschii (Bacillariophyceae) blooms using field mesocosms. J Freshw Ecol. 2017;32:477–88.

    • CAS
    • Google Scholar
  • 71.

    Krug L, Morauf C, Donat C, Müller H, Cernava T, Berg G. Plant growth-promoting methylobacteria selectively increase the biomass of biotechnologically relevant microalgae. Front Microbiol. 2020;11:427.

  • 72.

    Hopkinson BM, Morel FMM. The role of siderophores in iron acquisition by photosynthetic marine microorganisms. BioMetals. 2009;22:659–69.

  • 73.

    Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.

  • 74.

    Amin SA, Green DH, Gärdes A, Romano A, Trimble L, Carrano CJ. Siderophore-mediated iron uptake in two clades of Marinobacter spp. associated with phytoplankton: the role of light. Bimetals 2012;25:181–92.

    • CAS
    • Google Scholar
  • 75.

    Amin SA, Green DH, Hart MC, Küpper FC, Sunda WG, Carrano CJ. Photolysis of iron-siderophore chelates promotes bacterial-algal mutualism. Proc Natl Acad Sci USA. 2009;106:17071–6.

  • 76.

    Bajguz A, Piotrowska-Niczyporuk A. Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiol Biochem. 2014;80:176–83.

  • 77.

    de-Bashan L, Antoun H, Bashan Y. Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. In promoting growth of Chlorella vulgaris. J Phycol. 2008;44:938–47.

  • 78.

    Liu J, Qiu W, Song Y. Stimulatory effect of auxins on the growth and lipid productivity of Chlorella pyrenoidosa and Scenedesmus quadricauda. Algal Res. 2016;18:273–80.

    • Google Scholar
  • 79.

    Ozioko FU, Chiejina NV, Ogbonna JC. Effect of some phytohormones on growth characteristics of Chlorella sorokiniana IAM-C212 under photoautotrophic conditions. Afr J Biotechnol. 2015;14:2367–76.

    • CAS
    • Google Scholar
  • 80.

    Yu Z, Song M, Pei H, Jiang L, Hou Q, Nie C, et al. The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresour Technol. 2017;239:87–96.


  • Source: Ecology - nature.com

    Melting glaciers cool the Southern Ocean

    3 Questions: Energy studies at MIT and the next generation of energy leaders