in

Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030

  • 1.

    The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals (FAO, 2018).

  • 2.

    Turchini, G. M., Trushenski, J. T. & Glencross, B. D. Thoughts for the future of aquaculture nutrition: realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. N. Am. J. Aquac. 81, 13–39 (2019).

    • Google Scholar
  • 3.

    Froehlich, H., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).

    • Google Scholar
  • 4.

    Shepherd, C. J. & Jackson, A. J. Global fishmeal and fish-oil supply: inputs, outputs and markets. J. Fish Biol. 83, 1046–1066 (2013).

  • 5.

    Naylor, R. et al. Feeding aquaculture in an era of finite resources. Proc. Natl Acad. Sci. USA 106, 15103–15110 (2009).

  • 6.

    Naylor, R. et al. Effect of aquaculture on world fish supplies. Nature 405, 1017–1024 (2000).

  • 7.

    Wijkstrom, U. in Fish as Feed Inputs for Aquaculture: Practices, Sustainability and Implications Fisheries and Aquaculture Technical Paper Vol. 518 (eds Hasan, M. & Halwart, M.) 371–407 (2009).

  • 8.

    Turchini, G. M., Torstensen, B. E. & Ng, W. K. Fish oil replacement in finfish nutrition. Rev. Aquac. 1, 10–57 (2009).

    • Google Scholar
  • 9.

    Hasan, M. R. & Halwart, M. Fish as Feed Inputs for Aquaculture: Practices, Sustainability and Implications (FAO, 2009).

  • 10.

    Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

  • 11.

    Francis, G., Makkar, H. P. S. & Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197–227 (2001).

    • CAS
    • Google Scholar
  • 12.

    Hamilton, H. A. et al. Investigating cross-sectoral synergies through integrated aquaculture, fisheries, and agriculture phosphorus assessments: a case study of Norway. J. Ind. Ecol. 20, 867–882 (2015).

    • Google Scholar
  • 13.

    Kokou, F. & Fountoulaki, E. Aquaculture waste production associated with antinutrient presence in common fish feed plant ingredients. Aquaculture 495, 295–310 (2018).

    • CAS
    • Google Scholar
  • 14.

    Parker, R. Implications of high animal by-product feed inputs in life cycle assessments of farmed Atlantic salmon. Int. J. Life Cycle Assess. 23, 982–994 (2018).

    • CAS
    • Google Scholar
  • 15.

    Olsen, R. E. et al. Can mesopelagic mixed layers be used as feed sources for salmon aquaculture? Deep Res. Pt II https://doi.org/10.1016/j.dsr2.2019.104722 (2020).

  • 16.

    Saunders, R. A., Hill, S. L., Tarling, G. A. & Murphy, E. J. Myctophid fish (family Myctophidae) are central consumers in the food web of the scotia sea (Southern Ocean). Front. Mar. Sci. 6, 530 (2019).

    • Google Scholar
  • 17.

    Hua, K. et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316–329 (2019).

    • Google Scholar
  • 18.

    Pelletier, N., Klinger, D. H., Sims, N. A., Yoshioka, J. R. & Kittinger, J. N. Nutritional attributes, substitutability, scalability, and environmental intensity of an illustrative subset of current and future protein sources for aquaculture feeds: joint consideration of potential synergies and trade-offs. Environ. Sci. Technol. 52, 5532–5544 (2018).

  • 19.

    Fish to 2030: Prospects for Fisheries and Aquaculture (World Bank, 2013).

  • 20.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

  • 21.

    Smith, A. D. M. et al. Impacts of fishing low-trophic level species on marine ecosystems. Science 333, 1147–1150 (2011).

  • 22.

    Shah, M. R. et al. Microalgae in aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 30, 197–213 (2018).

    • Google Scholar
  • 23.

    Mahan, K. M. et al. Production of single cell protein from agro-waste using Rhodococcus opacus. J. Ind. Microbiol. Biotechnol. 45, 795–801 (2018).

  • 24.

    Rosas, V. T., Poersch, H., Romano, L. A. & Tesser, M. B. Feasibility of the use of Spirulina in aquaculture diets. Rev. Aquac. 11, 1367–1378 (2018).

    • Google Scholar
  • 25.

    Øverland, M. & Skrede, A. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture. J. Sci. Food Agric. 97, 733–742 (2017).

    • PubMed
    • Google Scholar
  • 26.

    Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 58, 563–583 (2013).

  • 27.

    Henry, M., Gasco, L., Piccolo, G. & Fountoulaki, E. Review on the use of insects in the diet of farmed fish: past and future. Anim. Feed Sci. Technol. 203, 1–22 (2015).

    • CAS
    • Google Scholar
  • 28.

    Sealey, W. M. et al. Sensory analysis of rainbow trout, Oncorhynchus mykiss, fed enriched black soldier fly prepupae, Hermetia illucens. J. World Aquac. Soc. 42, 34–45 (2011).

    • Google Scholar
  • 29.

    Lundy, M. E. & Parrella, M. P. Crickets are not a free lunch: protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PLoS ONE 10, e0118785 (2015).

  • 30.

    Harris, W. S. Omega-3 fatty acids and cardiovascular disease: a case for omega-3 index as a new risk factor. Pharmacol. Res. 55, 217–223 (2007).

  • 31.

    Von Schacky, C. Omega-3 index and cardiovascular health. Nutrients 6, 799–814 (2014).

  • 32.

    Tacon, A. G. J. & Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285, 146–158 (2008).

    • CAS
    • Google Scholar
  • 33.

    Salmon novelty in France: Supermarché Match launches salmon fed with Veramaris’ innovative natural marine algal oil. Veramaris (6 June 2019).

  • 34.

    Protix presents the Friendly SalmonTM, the first insect-fed salmon in the world. Protix (6 February 2018).

  • 35.

    Vigani, M. et al. Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends Food Sci. Technol. 42, 81–92 (2015).

    • CAS
    • Google Scholar
  • 36.

    Sprague, M., Betancor, M. B. & Tocher, D. R. Microbial and genetically engineered oils as replacements for fish oil in aquaculture feeds. Biotechnol. Lett. 39, 1599–1609 (2017).

  • 37.

    Taelman, S. E. et al. Bioresource technology the environmental sustainability of microalgae as feed for aquaculture: a life cycle perspective. Bioresour. Technol. 150, 513–522 (2013).

  • 38.

    Sustainability Report: Global 2017 (Skretting, 2017).

  • 39.

    Tacon, A. & Metian, M. Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquac. 23, 1–10 (2015).

    • Google Scholar
  • 40.

    Llagostera, P. F., Kallas, Z., Reig, L. & Amores de Gea, D. The use of insect meal as a sustainable feeding alternative in aquaculture: current situation, Spanish consumers’ perceptions and willingness to pay. J. Clean. Prod. 229, 10–21 (2019).

    • Google Scholar
  • 41.

    Essington, T. E. et al. Fishing amplifies forage fish population collapses. Proc. Natl Acad. Sci. USA 112, 6648–6652 (2015).

  • 42.

    Cao, L. et al. China’s aquaculture and the world’s wild fisheries. Science 347, 133–135 (2015).

  • 43.

    Chiu, A. et al. Feed and fishmeal use in the production of carp and tilapia in China. Aquaculture 414–415, 127–134 (2013).

    • Google Scholar
  • 44.

    Couture, J. L. et al. Environmental benefits of novel nonhuman food inputs to salmon feeds. Environ. Sci. Technol. 53, 1967–1975 (2019).

  • 45.

    Oonincx, D. G. A. B. et al. An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PLoS ONE 5, e14445 (2010).

  • 46.

    Oonincx, D. G. A. B. & de Boer, I. J. M. Environmental impact of the production of mealworms as a protein source for humans—a life cycle assessment. PLoS ONE 7, e51145 (2012).

  • 47.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • 48.

    Pahlow, M., van Oel, P. R., Mekonnen, M. M. & Hoekstra, A. Y. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Sci. Total Environ. 536, 847–857 (2015).

  • 49.

    Pickering, C. & Byrne, J. The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. High. Educ. Res. Dev. 33, 534–548 (2014).

    • Google Scholar
  • 50.

    Føre, M. et al. Review precision fish farming: a new framework to improve production in aquaculture. Biosyst. Eng. 173, 176–193 (2018).

    • Google Scholar
  • 51.

    Alhazzaa, R., Nichols, P. D. & Carter, C. G. Sustainable alternatives to dietary fish oil in tropical fish aquaculture. Rev. Aquac. 11, 1195–1218 (2018).

    • Google Scholar
  • 52.

    Harris, W. S. The omega-3 index as a risk factor for coronary heart disease. Am. J. Clin. Nutr. 87, 1997S–2002S (2008).

  • 53.

    Harris, W. S. & von Schacky, C. The omega-3 index: a new risk factor for death from coronary heart disease? Prev. Med. 39, 212–220 (2004).

  • 54.

    Berk, M. sme: Smoothing-splines mixed-effects models. R package v.1.0.2 (rdrr, 2018).

  • 55.

    FishStatJ (FAO, 2019).

  • 56.

    FAOSTAT (FAO, 2019); http://www.fao.org/faostat/en/#data


  • Source: Ecology - nature.com

    Q&A: Energy studies at MIT and the next generation of energy leaders

    Effects of climate and land-use changes on fish catches across lakes at a global scale