in

Sulfonamides-induced oxidative stress in freshwater microalga Chlorella vulgaris: Evaluation of growth, photosynthesis, antioxidants, ultrastructure, and nucleic acids

  • 1.

    Bai, X. & Acharya, K. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp. J. Hazard. Mater. 315, 70–75 (2016).

  • 2.

    Isidori, M., Lavorgna, M., Nardelli, A., Pascarella, L. & Parrella, A. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci. Total Environ. 346, 87–98 (2005).

  • 3.

    Xiong, J. Q., Kurade, M. B., Kim, J. R., Roh, H. S. & Jeon, B. H. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana. J. Hazard. Mater. 323, 212–219 (2017).

  • 4.

    Halling-Sørensen, B. et al. Occurrence, fate and effects of pharmaceutical substances in the environment–a review. Chemosphere 36, 357–393 (1998).

  • 5.

    Xin, Y. et al. Toxicity evaluation of pharmaceutical wastewaters using the alga Scenedesmus obliquus and the bacterium Vibrio fischeri. J. Hazard. Mater. 266, 68–74 (2014).

  • 6.

    Coogan, M. A., Edziyie, R. E., Point, T. W. L. & Venables, B. J. Algal bioaccumulation of triclocarban, triclosan, and methyl-triclosan in a North Texas wastewater treatment plant receiving stream. Chemosphere 67, 1911–1918 (2007).

  • 7.

    Xiong, J. Q. et al. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresour. Technol. 205, 183–190 (2016).

  • 8.

    Gonzalez-Barreiro, O., Rioboo, C., Herrero, C. & Cid, A. Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms. Environ. Pollut. 144, 266–271 (2006).

  • 9.

    Ji, M. K. et al. Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecol. Eng. 73, 260–269 (2014).

    • Article
    • Google Scholar
  • 10.

    Zhou, G. J., Peng, F. Q., Yang, B. & Ying, G. G. Cellular responses and bioremoval of nonylphenol and octylphenol in the freshwater green microalga Scenedesmus obliquus. Ecotox. Environ. Safe. 87, 10–16 (2013).

  • 11.

    Hom-Diaz, A. et al. Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. J. Environ. Manage. 155, 106–113 (2015).

  • 12.

    Maes, H. M., Maletz, S. X., Ratte, H. T., Hollender, J. & Schaeffer, A. Uptake, elimination, and biotransformation of 17alpha-ethinylestradiol by the freshwater alga Desmodesmus subspicatus. Environ. Sci. Technol. 48, 12354–12361 (2014).

  • 13.

    Chen, J., Zheng, F. & Guo, R. Algal feedback and removal efficiency in a sequencing batch reactor algae process (SBAR) to treat the antibiotic cefradine. PLoS One 10, e0133273 (2015).

  • 14.

    Cheng, J., Qiu, H., Chang, Z., Jiang, Z. & Yin, W. The effect of cadmium on the growth and antioxidant response for freshwater algae Chlorella vulgaris. SpringerPlus 5, 1290 (2016).

  • 15.

    Dauda, S., Chia, M. A. & Bako, S. P. Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. Aquat. Toxicol. 187, 108 (2017).

  • 16.

    Xiong, J. Q. et al. Biodegradation and metabolic fate of levofloxacin via a freshwater green alga, Scenedesmus obliquus in synthetic saline wastewater. Algal Res. 25, 54–61 (2017).

    • Article
    • Google Scholar
  • 17.

    Xiong, J. Q., Kurade, M. B. & Jeon, B. H. Biodegradation of levofloxacin by an acclimated freshwater microalga, Chlorella vulgaris. Chem. Eng. J. 313, 1251–1257 (2017).

  • 18.

    Misra, A. N., Misra, M. & Singh, R. Chlorophyll fluorescence in plant biology. (2012). Available at, http://www.intechopen.com/books/biophysics/chlorophyll-fluorescence-in-plant-biology

  • 19.

    Beasley, A., Belanger, S. E., Brill, J. L. & Otter, R. R. Evaluation and comparison of the relationship between NOEC and EC10 or EC20 values in chronic Daphnia toxicity testing. Environ. Toxicol. Chem. 34, 2378–2384 (2015).

  • 20.

    Eguchi, K. et al. Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57, 1733–1738 (2004).

  • 21.

    Białk-Bielińska, A. et al. Ecotoxicity evaluation of selected sulfonamides. Chemosphere 85, 928–933 (2011).

  • 22.

    Kurade, M. B., Kim, J. R., Govindwar, S. P. & Jeon, B. H. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res. 20, 126–134 (2016).

    • Article
    • Google Scholar
  • 23.

    Zhao, R. et al. Efficient enzymatic degradation used as pre-stage treatment for norfloxacin removal by activated sludge. Bioproc. Biosyst. Eng. 40, 1261–1270 (2017).

  • 24.

    Xiao, Y., Huang, Q., Chen, L. & Li, P. Growth and photosynthesis responses of Phaeodactylum tricornutum to dissolved organic matter from salt marsh plant and sediment. J. Environ. Sci. 22, 1239–1245 (2010).

  • 25.

    Perales-Vela, H. V., Garcia, R. V., Gomez-Juarez, E. A., Salcedo-Alvarez, M. O. & Canizares-Villanueva, R. O. Streptomycin affects the growth and photochemical activity of the alga Chlorella vulgaris. Ecotox. Environ. Safe. 132, 311–317 (2016).

  • 26.

    Nie, X., Wang, X., Chen, J., Zitko, V. & An, T. Response of the freshwater alga chlorella vulgaris to trichloroisocyanuric acid and ciprofloxacin. Environ. Toxicol. Chem. 27, 168–173 (2010).

    • Article
    • Google Scholar
  • 27.

    Zhang, L. et al. Salinity-induced cellular cross-talk in carbon partitioning reveals starch-to-lipid biosynthesis switching in low-starch freshwater algae. Bioresour. Technol. 250, 449 (2017).

  • 28.

    Kasahara, M. et al. Chloroplast avoidance movement reduces photodamage in plants. Nature 420, 829 (2002).

  • 29.

    Liu, W., Ming, Y., Huang, Z. & Li, P. Impacts of florfenicol on marine diatom Skeletonema costatum through photosynthesis inhibition and oxidative damages. Plant physiol. bioch. 60, 165–170 (2012).

  • 30.

    Aderemi, A. O. et al. Oxidative stress responses and cellular energy allocation changes in microalgae following exposure to widely used human antibiotics. Aquat. Toxicol. 203, 130–139 (2018).

  • 31.

    Sun, X. et al. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour. Technol. 155, 204–212 (2014).

  • 32.

    Rosa, M. et al. Soluble sugars–metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal. Behav. 4, 388 (2009).

  • 33.

    Sami, F., Yusuf, M., Faizan, M., Faraz, A. & Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109, 54–61 (2016).

  • 34.

    Bigorgne, E. et al. Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida. Environ. Pollut. 159, 2698–2705 (2011).

  • 35.

    Upadhyay, A. K. et al. Augmentation of arsenic enhances lipid yield and defense responses in alga Nannochloropsis sp. Bioresour. Technol. 221, 430–437 (2016).

  • 36.

    Nie, X. P., Liu, B. Y., Yu, H. J., Liu, W. Q. & Yang, Y. F. Toxic effects of erythromycin, ciprofloxacin and sulfamethoxazole exposure to the antioxidant system in Pseudokirchneriella subcapitata. Environ. Pollut. 172, 23–32 (2013).

  • 37.

    Qian, H. et al. The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. Aquat. Toxicol. 92, 250–257 (2009).

  • 38.

    Li, F. M. et al. Inhibitory effects and oxidative target site of dibutyl phthalate on Karenia brevis. Chemosphere 132, 32–39 (2015).

  • 39.

    Marchi, L. D. et al. The impacts of seawater acidification on Ruditapes philippinarum sensitivity to carbon nanoparticles. Environ. Sci.: Nano. 4, 1692–1704 (2017).

    • Google Scholar
  • 40.

    Rai, U. N., Singh, N. K., Upadhyay, A. K. & Verma, S. Chromate tolerance and accumulation in Chlorella vulgaris L.: role of antioxidant enzymes and biochemical changes in detoxification of metals. Bioresour. Technol. 136, 604–609 (2013).

  • 41.

    Ding, S. H., Jiang, R., Lu, Q. T., Wen, X. G. & Lu, C. M. Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light. Biochim. Biophys. Acta. 1857, 665–677 (2016).

  • 42.

    Nemat Alla, M. M. & Hassan, N. M. Changes of antioxidants levels in two maize lines following atrazine treatments. Plant Physiol. Biochem. 44, 202–210 (2006).

  • 43.

    Singh, R., Upadhyay, A. K. & Singh, D. P. Regulation of oxidative stress and mineral nutrient status by selenium in arsenic treated crop plant Oryza sativa. Ecotox. Environ. Safe. 148, 105–113 (2017).

  • 44.

    Foyer, C. H., Theodoulou, L. F. & Delrot, S. The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci. 6, 486–492 (2001).

  • 45.

    Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).

  • 46.

    Shao, Y., Wu, R. S. S. & Kong, R. Y. C. Physiological and cytological responses of the marine diatom Skeletonema costatum to 2,4-dichlorophenol. Aquat. Toxicol. 60, 33–41 (2002).

    • Article
    • Google Scholar
  • 47.

    Gambonnet, B. et al. Folate distribution during higher plant development. J. Sci. Food Agric. 81, 835–841 (2010).

    • Article
    • Google Scholar
  • 48.

    Vasseur, P. & Cossu-Leguille, C. Biomarkers and community indices as complementary tools for environmental safety. Environ. Int. 28, 711–717 (2003).

  • 49.

    Zhang, J. W., Fu, D. F. & Wu, J. L. Synthesized oversulfated and acetylated derivatives of polysaccharide extracted from Enteromorpha linza and their potential antioxidant activity. Int. J. Biol. Macromol. 49, 1012–1015 (2011).

  • 50.

    Zhang, J. W. & Ma, L. Photodegradation mechanism of sulfadiazine catalyzed by Fe(III), oxalate and algae under UV irradiation. Environ. Technol. 34, 1617–1623 (2013).

  • 51.

    Zhang, J. W., Fu, D. F. & Wu, J. L. Photodegradation of norfloxacin in aqueous solution containing algae. J. Environ. Sci. 24, 743–749 (2012).

  • 52.

    Batista, A. P. S., Pires, F. C. C. & Teixeira, A. C. S. C. Photochemical degradation of sulfadiazine, sulfamerazine and sulfamethazine: relevance of concentration and heterocyclic aromatic groups to degradation kinetics. J. Photochem. Photobiol. A 286, 40–46 (2014).

  • 53.

    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).

    • Google Scholar
  • 54.

    Pan, S., Yan, N., Zhang, Y. & Rittmann, B. E. UV photolysis for relieved inhibition of sulfadiazine (SD) to biomass growth. Bioproc. Biosyst. Eng. 38, 911–915 (2015).

  • 55.

    OECD Test No. 201: freshwater alga and cyanobacteria, growth inhibition test paris OECD Guidelines for the Testing of Chemicals, (2006).

  • 56.

    USEPA (United States Environmental Protection Agency) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to fresh water organisms (EPA-821-R-02-013), 4th ed., USA Washington DC, (2002).

  • 57.

    Salbitani, G. et al. Sulfur Deprivation results in oxidative perturbation in Chlorella sorokiniana (211/8k). 56, 897-905 (2015).

  • 58.

    Hillebrand, H., Dürselen, C.-D., Kirchtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelaglc and benthic microalgae. J. Phycol. 35, 403–424 (1999).

    • Article
    • Google Scholar
  • 59.

    Almeida, A. C., Gomes, T., Langford, K., Thomas, K. V. & Tollefsen, K. E. Oxidative stress potential of the herbicides bifenox and metribuzin in the microalgae Chlamydomonas reinhardtii. Aquat. Toxicol. 210, 117–128 (2019).

  • 60.

    Bradford, M. M. A rapid method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

  • 61.

    Mccready, R. M., Guggolz, J. & Silviera, V. Determination of starch and amylose in vegetables. Anal. Biochem. 22, 1156–1158 (1950).

    • CAS
    • Google Scholar
  • 62.

    Beauchamp, C. & Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44, 276–287 (1971).

  • 63.

    Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clini. Chim. Acta. 196, 143–151 (1991).

    • Article
    • Google Scholar
  • 64.

    Gutterer, J. M., Dringen, R., Hirrlinger, J. & Hamprecht, B. Purification of glutathione reductase from bovine brain, generation of an antiserum, and immunocytochemical localization of the enzyme in neural cells. J. Neurochem. 73, 1422–1430 (2010).

    • Article
    • Google Scholar
  • 65.

    Ohkawa, H., Ohishi, N. & Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95, 351–358 (1979).

  • 66.

    Liu, L. et al. Oxidative stress induces gastric submucosal arteriolar dysfunction in the elderly. World. J. Gastroentero. 19, 9439–9446 (2013).

    • Article
    • Google Scholar
  • 67.

    Fang, L. C. et al. Characterization of Rhodopseudomonas palustris strain 2C as a potential probiotic. Apmis 120, 743–749 (2012).

  • 68.

    Lapaille, M. et al. Atypical subunit composition of the chlorophycean mitochondrial F1FO-ATP synthase and role of Asa7 protein in stability and oligomycin resistance of the enzyme. Mol. Biol. Evol. 27, 1630–1644 (2010).

  • 69.

    Tice, R. R., Andrews, P. W., Hirai, O. & Singh, N. P. The single cell gel (SCG) assay: an electrophoretic technique for the detection of DNA damage in individual cells. Biol. React. Intermed. IV 283, 157–164 (1991).

    • CAS
    • Google Scholar
  • 70.

    D’Avolio, A. et al. Ultra performance liquid chromatography PDA method for determination of tigecycline in human plasma. Ther. Drug. Monit. 35, 853–858 (2013).

  • 71.

    Chen, S., Xu, F., Zhang, W., Tang, W. Q. & Wang, L. Q. Research progress in pollution situation and environmental behavior of sulfonamides. Environ. Chem. 38, 38–37 (2019).

    • Google Scholar

  • Source: Ecology - nature.com

    Q&A: Energy studies at MIT and the next generation of energy leaders

    Effects of climate and land-use changes on fish catches across lakes at a global scale