in

Humidity governs the wall-inhabiting fungal community composition in a 1600-year tomb of Emperor Yang

  • 1.

    Raimondo, M., Dondi, M., Mazzanti, F., Stefanizzi, P. & Bondi, P. Equilibrium moisture content of clay bricks: The influence of the porous structure. Building and Environment 42, 926–932 (2007).

    • Google Scholar
  • 2.

    Radko, A. K. Cause and consequence: volume changes behind building material deterioration. c, 171–180 (2004).

  • 3.

    Kiurski, J. S., Ranogajec, J. G., Ujhelji, A. L., Radeka, M. M. & Bokorov, M. T. Evaluation of the effect of lichens on ceramic roofing tiles by scanning electron microscopy and energy-dispersive spectroscopy analyses. Scanning 27, 113–119 (2005).

  • 4.

    Radeka, M., Ranogajec, J., Marinkovic-Neducm, R., Ducman, V. & Skapin, A. S. The effect of the firing temperature of clay roofing tiles on the mechanisms of frost action. Industrial Ceramics 30, 97–104 (2010).

    • CAS
    • Google Scholar
  • 5.

    Qi-Wang, Ma, G.-Y., He, L.-Y. & Sheng, X.-F. Characterization of bacterial community inhabiting the surfaces of weathered bricks of Nanjing Ming city walls. Science of The Total Environment 409, 756–762 (2011).

  • 6.

    Mazzoli, R., Giuffrida, M. G. & Pessione, E. Back to the past: “find the guilty bug—microorganisms involved in the biodeterioration of archeological and historical artifacts”. Applied Microbiology and Biotechnology 102, 6393–6407 (2018).

  • 7.

    Radeka, M., Kiurski, J., Markov, S., Marinković-Nedučin, R. & Ranogajec, J. Microbial deterioration of clay roofing tiles. In Structural Studies, Repairs and Maintenance of Heritage Architecture X vol. I 567–575 (WIT Press, 2007).

  • 8.

    Dakal, T. C. & Arora, P. K. Evaluation of potential of molecular and physical techniques in studying biodeterioration. Reviews in Environmental Science and Bio/Technology 11, 71–104 (2012).

    • Google Scholar
  • 9.

    Vasanthakumar, A., DeAraujo, A., Mazurek, J., Schilling, M. & Mitchell, R. Microbiological survey for analysis of the brown spots on the walls of the tomb of King Tutankhamun. International Biodeterioration and Biodegradation 79, 56–63 (2013).

    • CAS
    • Google Scholar
  • 10.

    Coutinho, M. L., Miller, A. Z. & Macedo, M. F. Biological colonization and biodeterioration of architectural ceramic materials: An overview. Journal of Cultural Heritage 16, 759–777 (2015).

    • Google Scholar
  • 11.

    Sterflinger, K. & Piñar, G. Microbial deterioration of cultural heritage and works of art — tilting at windmills? Applied Microbiology and Biotechnology 97, 9637–9646 (2013).

  • 12.

    Zhang, X., Ge, Q., Zhu, Z., Deng, Y. & Gu, J. D. Microbiological community of the Royal Palace in Angkor Thom and Beng Mealea of Cambodia by Illumina sequencing based on 16S rRNA gene. International Biodeterioration and Biodegradation 134, 127–135 (2018).

    • CAS
    • Google Scholar
  • 13.

    Lepinay, C. et al. Biofilm communities survey at the areas of salt crystallization on the walls of a decorated shelter listed at UNESCO World cultural Heritage. International Biodeterioration and Biodegradation 122, 116–127 (2017).

    • CAS
    • Google Scholar
  • 14.

    Liu, X., Meng, H., Wang, Y., Katayama, Y. & Gu, J. Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. International Biodeterioration and Biodegradation 133, 9–16 (2018).

    • CAS
    • Google Scholar
  • 15.

    Lepinay, C. et al. Bacterial diversity associated with saline efflorescences damaging the walls of a French decorated prehistoric cave registered as a World Cultural Heritage Site. International Biodeterioration and Biodegradation 130, 55–64 (2018).

    • CAS
    • Google Scholar
  • 16.

    Duan, Y. et al. Differences of Microbial Community on the wall paintings preserved in situ and ex situ of the Tiantishan Grottoes, China. International Biodeterioration and Biodegradation 132, 102–113 (2018).

    • Google Scholar
  • 17.

    Sterflinger, K. et al. Future directions and challenges in biodeterioration research on historic materials and cultural properties. International Biodeterioration and Biodegradation 129, 10–12 (2018).

    • CAS
    • Google Scholar
  • 18.

    Gaylarde, C. C. & Morton, L. H. G. Deteriogenic biofilms on buildings and their control: A review. Biofouling 14, 59–74 (1999).

    • Google Scholar
  • 19.

    Ponizovskaya, V. B. et al. Micromycetes as colonizers of mineral building materials in historic monuments and museums. Fungal Biology 123, 290–306 (2019).

  • 20.

    Huang, Z., Zhao, F., Li, Y., Zhang, J. & Feng, Y. Variations in the bacterial community compositions at different sites in the tomb of Emperor Yang of the Sui Dynasty. Microbiological Research 196, 26–33 (2017).

    • PubMed
    • Google Scholar
  • 21.

    Huang, Z., Zhao, F. & Li, Y. H. Isolation of Paenibacillus tumbae sp. nov., from the tomb of the emperor Yang of the Sui dynasty, and emended description of the genus Paenibacillus. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 110, 357–364 (2017).

    • CAS
    • Google Scholar
  • 22.

    CSHPF-Conseil Superieur d’Hygiene Publique de France. Contaminations fongiques en milieux interieurs. Diagnostic, effet sur la sante respiratoire, conduite a tenir (2006).

  • 23.

    Fog Nielsen, K. Mycotoxin production by indoor molds. Fungal Genetics and Biology 39, 103–117 (2003).

    • PubMed
    • Google Scholar
  • 24.

    Castlebury, L. A., Rossman, A. Y., Sung, G.-H., Hyten, A. S. & Spatafora, J. W. Multigene phylogeny reveals new lineage for Stachybotrys chartarum, the indoor air fungus. Mycological Research 108, 864–872 (2004).

  • 25.

    Gutarowska, B. & Czyżowska, A. The ability of filamentous fungi to produce acids on indoor building materials. Annals of Microbiology 59, 807–813 (2009).

    • CAS
    • Google Scholar
  • 26.

    Andersen, B., Nielsen, K. F. & Jarvis, B. B. Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production. Mycologia 94, 392–403 (2002).

  • 27.

    Singh, P. P., Shin, Y. C., Park, C. S. & Chung, Y. R. Biological Control of Fusarium Wilt of Cucumber by Chitinolytic Bacteria. Phytopathology 89, 92–99 (1999).

  • 28.

    Michielse, C. B. & Rep, M. Pathogen profile update: Fusarium oxysporum. Molecular Plant Pathology 10, 311–324 (2009).

  • 29.

    Elhagrassy, A. F. Isolation and characterization of actinomycetes from Mural paintings of Snu- Sert-Ankh tomb, their antimicrobial activity, and their biodeterioration. Microbiological Research 216, 47–55 (2018).

  • 30.

    Geweely, N. S., Afifi, H. A. M., Abdelrahim, S. A. & Alakilli, S. Y. M. Novel Comparative Efficiency of Ozone and Gamma Sterilization on Fungal Deterioration of Archeological Painted Coffin, Saqqara Excavation, Egypt. Geomicrobiology Journal 31, 529–539 (2014).

    • CAS
    • Google Scholar
  • 31.

    Gu, J.-D., Ford, T. E., Berke, N. S. & Mitchell, R. Biodeterioration of concrete by the fungus Fusarium. International Biodeterioration & Biodegradation 41, 101–109 (1998).

    • Google Scholar
  • 32.

    Savković, Ž. et al. Diversity and biodeteriorative potential of fungal dwellers on ancient stone stela. International Biodeterioration and Biodegradation 115, 212–223 (2016).

    • Google Scholar
  • 33.

    Guglielminetti, M. et al. Mycological and ultrastructural studies to evaluate biodeterioration of mural paintings. Detection of fungi and mites in Frescos of the monastery of St Damian in Assisi. International Biodeterioration & Biodegradation 33, 269–283 (2002).

    • Google Scholar
  • 34.

    Marinach-Patrice, C. et al. Use of mass spectrometry to identify clinical Fusarium isolates. Clinical Microbiology and Infection 15, 634–642 (2009).

  • 35.

    Rao, C. Y. et al. Characterization of Airborne Molds, Endotoxins, and Glucans in Homes in New Orleans after Hurricanes Katrina and Rita. Applied and Environmental Microbiology 73, 1630–1634 (2007).

  • 36.

    Sharma, R. R., Singh, D. & Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control 50, 205–221 (2009).

    • ADS
    • Google Scholar
  • 37.

    Daranagama, N. D. et al. Proteolytic analysis of Trichoderma reesei in celluase-inducing condition reveals a role for trichodermapepsin (TrAsP) in cellulase production. Journal of Industrial Microbiology & Biotechnology 46, 831–842 (2019).

    • CAS
    • Google Scholar
  • 38.

    Lübeck, M. Identification of Trichoderma strains from building materials by ITS1 ribotyping, UP-PCR fingerprinting and UP-PCR cross hybridization. FEMS Microbiology Letters 185, 129–134 (2000).

    • PubMed
    • Google Scholar
  • 39.

    McMullin, D. R., Renaud, J. B., Barasubiye, T., Sumarah, M. W. & Miller, J. D. Metabolites of Trichoderma species isolated from damp building materials. Canadian Journal of Microbiology 63, 621–632 (2017).

  • 40.

    Hameed, A. A. A., Yasser, I. H. & Khoder, I. M. Indoor air quality during renovation actions: A case study. Journal of Environmental Monitoring 6, 740–744 (2004).

    • PubMed
    • Google Scholar
  • 41.

    Guerra, F. L. et al. Biodeterioration of mortar coating in historical buildings: Microclimatic characterization, material, and fungal community. Building and Environment 155, 195–209 (2019).

    • Google Scholar
  • 42.

    Samson, R. A. & Hoekstra, E. S. Health implications of fungi in indoor environments. In AIR QUALITY MONOGRAPHS (eds. Samson, R. A. et al.) 541–587 (Elsevier, 1994).

  • 43.

    Walsh, T. J. et al. Infections due to emerging and uncommon medically important fungal pathogens. Clinical Microbiology and Infection 10, 48–66 (2004).

    • PubMed
    • Google Scholar
  • 44.

    Sautour, M. et al. First case of proven invasive pulmonary infection due to Trichoderma longibrachiatum in a neutropenic patient with acute leukemia. Journal de Mycologie Médicale 28, 659–662 (2018).

  • 45.

    Dedesko, S. & Siegel, J. A. Moisture parameters and fungal communities associated with gypsum drywall in buildings. Microbiome 3, 71 (2015).

  • 46.

    Adams, R. I., Bateman, A. C., Bik, H. M. & Meadow, J. F. Microbiota of the indoor environment: a meta-analysis. Microbiome 3, 49 (2015).

  • 47.

    Doll, S. C. & Burge, H. A. Characterization of fungi occurring on ‘new’ gypsum wallboard. In IAQ Conference (2001).

  • 48.

    Hegarty, B., Dannemiller, K. C. & Peccia, J. Gene expression of indoor fungal communities under damp building conditions: Implications for human health. Indoor Air 28, 548–558 (2018).

  • 49.

    Brennan, T., Cummings, J. B. & Lstiburek, J. Unplanned airflows & moisture problems. ASHRAE Journal (2002).

  • 50.

    Murtoniemi, T., Nevalainen, A. & Hirvonen, M.-R. Effect of Plasterboard Composition on Stachybotrys chartarum Growth and Biological Activity of Spores. Applied and Environmental Microbiology 69, 3751–3757 (2003).

  • 51.

    Gorbushina, A. A. Life on the rocks. Environmental Microbiology 9, 1613–1631 (2007).

  • 52.

    Gaylarde, P., Gaylarde, C., Guiamet, P., de Saravia, S. G. & Videla, H. Biodeterioration of Mayan buildings at uxmal and tulum, Mexico. Biofouling 17, 41–45 (2001).

    • Google Scholar
  • 53.

    Nielsen, K. F., Holm, G., Uttrup, L. P. & Nielsen, P. A. Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. International Biodeterioration & Biodegradation 54, 325–336 (2004).

    • CAS
    • Google Scholar
  • 54.

    Pietikäinen, J., Pettersson, M. & Bååth, E. Comparison of temperature effects on soil respiration and bacterial and fungal growth rates. FEMS Microbiology Ecology 52, 49–58 (2005).

    • PubMed
    • Google Scholar
  • 55.

    Banfield, J. F., Barker, W. W., Welch, S. A. & Taunton, A. Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences 96, 3404–3411 (1999).

  • 56.

    Vainio, E. J. & Hantula, J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal. DNA. 104, 927–936 (2000).

    • CAS
    • Google Scholar
  • 57.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0. molecular biology and evolution. Molecular Biology and Evolution (2016).

  • 58.

    Šmilauer, P. & Lepš, J. Multivariate analysis of ecological data using Canoco 5. Multivariate Analysis of Ecological Data Using CANOCO 5, https://doi.org/10.1017/CBO9781139627061 (2014).


  • Source: Ecology - nature.com

    Towable sensor free-falls to measure vertical slices of ocean conditions

    The quest for practical fusion energy sources