in

Predicting lake dissolved organic carbon at a global scale

  • 1.

    Sobek, S., Söderbäck, B., Karlsson, S., Andersson, E. & Brunberg, A. K. A Carbon budget of a small humic lake: an example of the importance of lakes for organic matter cycling in boreal catchments. Ambio 35, 469–475 (2006).

  • 2.

    Tranvik, L. J., Cole, J. J. & Praire, Y. T. The study of carbon in inland waters—from isolated ecosystems to players in the global carbon cycle. Limnol. Oceanogr Letters 3, 41–48 (2018).

    • Google Scholar
  • 3.

    Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosyst. 10, 171–184 (2007).

    • CAS
    • Google Scholar
  • 4.

    Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331(6013), 50 (2011).

  • 5.

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

  • 6.

    Downing, J. A. et al. The global abundance and size ditribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).

    • ADS
    • Google Scholar
  • 7.

    Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nature Communic. 8, 1694 (2017).

    • ADS
    • Google Scholar
  • 8.

    Battin, T. J. et al. The boundless carbon cycle. Nature Geosci 2(9), 598–600 (2009).

  • 9.

    Sobek, S., Tranvik, L. J., Prairie, P., Kortelainen, P. & Cole, J. J. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol. Oceanogr 52, 1208–1219 (2007).

  • 10.

    Dillon, P. J. & Molot, L. A. Effect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchments. Water Resources Res. 33, 2591–2600 (1997).

  • 11.

    Aitkenhead, J., D., H. & Billett, M. F. The relationship between dissolved organic carbon in streamwater and soil organic carbon pools at different spatial scales. Hydrol. Processes 13, 22–33 (1999).

    • Google Scholar
  • 12.

    Hanson, P. C. et al. Fate of allochthonous dissolved organic carbon in lakes: a quantitative approach. Plos One 6, e21884 (2011).

  • 13.

    Creed, I. F., Sanford, S. E., Beall, F. D., Molot, L. A. & Dillon, P. J. Cryptic wetlands: integrating hidden wetlands in regression models of the export of dissolved organic carbon from forested landscapes. Hydrol. Processes 17, 3629–3648 (2003).

    • ADS
    • Google Scholar
  • 14.

    Cory, R. M. & Kling, G. W. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol. Oceanogr Letters 3, 102–116 (2018).

    • CAS
    • Google Scholar
  • 15.

    Obernosterer, I. & Benner, R. Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol. Oceanogr. 49, 117–124 (2004).

  • 16.

    Xenopoulos, M. A. et al. Regional comparisons of watershed determinants of dissolved organic carbon in temperate lakes from the Upper Great Lakes region and selected regions globally. Limnol. Oceanogr 48, 2321–2334 (2003).

  • 17.

    Seekell, D. A. et al. Regional-scale variation of dissolved organic carbon concentrations in Swedish lakes. Limnol. Oceanogr. 59, 1612–1620 (2014).

  • 18.

    Chen, M. et al. Global landscape of total organic carbon, nitrogen and phosphorus in lake water. Scientific Reports 5, 15043 (2015).

  • 19.

    Weyhenmeyer, G. A. & Karlsson, J. Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures. Limnol. Oceanogr. 54, 2513–2519 (2009).

  • 20.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regressioon trees. J. Animal Ecol. 77, 802–813 (2008).

    • CAS
    • Google Scholar
  • 21.

    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, I. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communic. 7, 13603 (2016).

  • 22.

    Lehner, B. & Messager, M., HydroLAKES Technical Documentation Version 1.0 (2016).

  • 23.

    Fick, S. E. & Hijmans, R. J., Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. (2017).

  • 24.

    Freeman, C., Evans, C. D., Monteith, D. T., Reynolds, B. & Fenner, N. Export of organic carbon from peat soils. Nature 412, 785 (2001).

  • 25.

    Erlandsson, M. et al. Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Glob. Chang. Biol. 14, 1–8 (2008).

    • Google Scholar
  • 26.

    Laudon, H. et al. Cross-regional prediction of long-term trajectory of stream water DOC response to climate change. Geophys. Res. Lett. 39, L18404 (2012).

    • ADS
    • Google Scholar
  • 27.

    Cole, L., Bardgett, R. D., Ineson, P. & Adamson, J. K. Relationships between enchytraeid worms (Oligochaeta), climate change, and the release of dissolved organic carbon from blanket peats in Northern England. Soil Biol. Biochem. 34, 599–607 (2002).

    • CAS
    • Google Scholar
  • 28.

    Molot, L. A., Hudson, J. J., Dillon, P. J. & S.A., M. Effect of pH on photo-oxidation of dissolved organic carbon by hydroxyl radicals in a coloured, softwater stream. Aquat. Sci. 67, 189–195 (2005).

    • CAS
    • Google Scholar
  • 29.

    Hudson, J. J., Dillon, P. J. & Somers, K. M. Long-term patterns in dissolved organic carbon in boreal lakes: the role of incident radiation, precipitation, air temperature, southern oscillation and acid deposition. Hydrol. Earth Sys. Sci. 7, 390–398 (2003).

  • 30.

    Zhang, J. et al. Long-term patterns of dissolved organic carbon in lakes across Eastern Canada: evidence of a pronounced climate effect. Limnol. Oceanogr. 55, 30–42 (2010).

  • 31.

    Anderson, N. J. & Stedmon, C. A. The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshwater Biol. 52, 280–289 (2007).

    • CAS
    • Google Scholar
  • 32.

    Laurion, I., Ventura, M., Catalan, J., Psenner, R. & Sommaruga, R. Attenuation of ultraviolet radiation in mountain lakes: Factors controlling the among- and within-lake variability. Limnol. Oceanogr. 45, 1274–1288 (2000).

    • ADS
    • Google Scholar
  • 33.

    Rasmussen, J. B., Godbout, L. & Schallenberg, M. The humic content of lake water and its relationship to watershed and lake morphometry. Limnol. Oceanogr. 34, 1336–1343 (1989).

  • 34.

    D’Arcy, P. & Carignan, R. Influence of catchment topography on water chemistry in southeastern Quebec Shield lakes. Can. J. Fish. Aquat. Sci. 54, 2215–2227 (1997).

    • Google Scholar
  • 35.

    Musolff, A. et al. Spatio-temporal controls of dissolved organic carbon stream water. J. Hydrol. 566, 205–215 (2018).

  • 36.

    Hayes, N. M., Deemer, B. R., Corman, J. R., Razavi, N. R. & Strock, K. E. Key differences between lakes and reservoirs modify climate signals: A case for a new conceptual model. Limnol. Oceanogr. Letters 2, 47–62 (2017).

    • Google Scholar
  • 37.

    Catalan, N., Marce, R., Kothawala, D. N. & Tranvik, L. J. Organic carbon decomposition rates controlled by water retention time across inland waters. Nature Geosci. 9, 501–504 (2016).

  • 38.

    Kortelainen, P. Content of total organic carbon in Finnish lakes and its relationship to catchment characteristics. Can. J. Fish. Aquat. Sci. 50, 1477–1483 (1993).

    • CAS
    • Google Scholar
  • 39.

    Pace, M. L. & Cole, J. J. Synchronous variation of dissolved organic carbon and color in lakes. Limnol. Oceanogr. 47, 333–342 (2002).

  • 40.

    Agatova, A. I., Torgunova, N. I., Serebrennikova, E. A. & Duhova, L. K. Spatio-temporal variation of organic substances in the Caspian Sea waters. Vodnye Resursy 46, 70–81 (2019). (in Russian).

    • Google Scholar
  • 41.

    Wetzel, R., Limnology. Lake and river ecosystems., 3rd ed. (Academic Press, 2001).

  • 42.

    Verpoorter, C., Kutser, T., Seekel, D. A. & Tranvik, L. J. A Global Inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Letters 41, 6396–6402 (2014).

    • ADS
    • Google Scholar
  • 43.

    IPCC, Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).

  • 44.

    Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 54, 2298–2314 (2009).

  • 45.

    Sobek, S. et al. The catchment and climate regulation of pCO2 in boreal lakes. Global Change Biol. 9, 630–641 (2003).

    • ADS
    • Google Scholar
  • 46.

    Seekell, D. A. et al. The influence of dissolved organic carbon on lake primary production. Limnol. Oceanogr. 60(4), 1276–1285 (2015).

  • 47.

    Montheit, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–541 (2007).

    • ADS
    • Google Scholar
  • 48.

    Kritzberg, E. Centennial-long trends of lake browning show major effect of afforestation. Limnol. Oceanogr. Letters 2, 105–112 (2017).

    • Google Scholar
  • 49.

    Winterdahl, M. et al. Intra-annual variability of organic carbon concentrations in running waters: Drivers along a climatic gradient. Global Biochem. Cycles 28, 451–464 (2014).

  • 50.

    Toming, K. et al. First experiences in mapping lake water quality parameters with Sentinel-2 MSI imagery. Remote Sens. 8, 1–14 (2016).

    • Google Scholar
  • 51.

    Yoshioka, T. et al. Distribution of dissolved organic carbon in Lake Baikal and its watershed. Limnol. 3, 159–168 (2002).

    • CAS
    • Google Scholar
  • 52.

    Ramlal, P. S., Hecky, R. E., Bootsma, H. A. & Schiff, S. L. Sources and fluxes of organic carbon in Lake Malawi/Nyasa. J. Great Lakes Res. 29, 107–120 (2003).

    • CAS
    • Google Scholar
  • 53.

    Zigah, P. K., Minor, E. C. & Werne, J. P. Radiocarbon and stable-isotope geochemistry of organic and inorganic carbon in Lake Superior. Global biogeochem. Cycles 26, GB1023 (2012).

    • ADS
    • Google Scholar
  • 54.

    Biddanda, B. A. & Cotner, J. B. Enhancement of dissolved organic matter bioavailability by sunlight and its role in the carbon cycle of Lakes Superior and Michigan. J. Great Lakes Res. 29, 228–241 (2003).

    • CAS
    • Google Scholar
  • 55.

    Shuchman, R. A. et al. An algorithm to retrieve chlorophyll, dissolved organic carbon, and suspended minerals from Great Lakes satellite data. J. Great Lakes Res. 39, 14–33 (2013).

    • CAS
    • Google Scholar
  • 56.

    Hastie, T., Tibshirani, R. & Friedman, J. In The elements of statistical learning. Springer Series in Statistics, edited by Hastie, T., Tibshirani, R. & Friedman, J. (Springer, New York, 2009), pp. 9-41.

  • 57.

    Kotta, J. et al. Predicting the cover and richness of intertidal macroalgae in remote areas: a case study in the Antarctic Peninsula. Ecol. Evolution 8, 9086–9094 (2018).

    • Google Scholar
  • 58.

    Greenwell, B. M. pdp: An R. Package for constructing partial dependence plots. The R Journal 9, 421–436 (2017).

    • Google Scholar
  • 59.

    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).

    • Google Scholar

  • Source: Ecology - nature.com

    Towable sensor free-falls to measure vertical slices of ocean conditions

    The quest for practical fusion energy sources