in

30 years revisit survey for long-term changes in the Antarctic subtidal algal assemblage

  • 1.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

  • 2.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).

  • 3.

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

  • 4.

    Wernberg, T. et al. Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J. Exp. Mar. Biol. Ecol. 400, 7–16 (2011).

    • Google Scholar
  • 5.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37 (2003).

  • 6.

    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

  • 7.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

  • 8.

    Moon, H.-W., Hussin, W. M. R. W., Kim, H.-C. & Ahn, I.-Y. The impacts of climate change on Antarctic nearshore mega-epifaunal benthic assemblages in a glacial fjord on King George Island: responses and implications. Ecol. Indic. 57, 280–292 (2015).

    • Google Scholar
  • 9.

    Fields, P., Graham, J., Rosenblatt, R. & Somero, G. Effects of expected global climate change on marine faunas. Trends Ecol. Evol. 8, 361–367 (1993).

  • 10.

    Filbee-Dexter, K., Wernberg, T., Fredriksen, S., Norderhaug, K. M. & Pedersen, M. F. Arctic kelp forests: Diversity, resilience and future. Glob. Planet. Change 172, 1–14 (2019).

    • ADS
    • Google Scholar
  • 11.

    Harley, C. D. G. et al. Effects of climate change on global seaweed communities. J. Phycol. 48, 1064–1078 (2012).

  • 12.

    Hepburn, C. et al. Diversity of carbon use strategies in a kelp forest community: implications for a high CO ocean. Glob. Chang. Biol. 17, 2488–2497 (2011).

    • ADS
    • Google Scholar
  • 13.

    Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Ku’ulei, S. R. & Mackenzie, F. T. Decreased abundance of crustose coralline algae due to ocean acidification. Nat. Geosci. 1, 114 (2008).

  • 14.

    Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal evolution in relation to atmospheric CO : carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos. Trans. R. Soc. Lond., Ser. B: Biol. Sci 367, 493–507 (2012).

    • CAS
    • Google Scholar
  • 15.

    Wernberg, T. et al. Seaweed communities in retreat from ocean warming. Curr. Biol. 21, 1828–1832 (2011).

  • 16.

    Siegert, M. J. et al. The Antarctic Peninsula under a 1.5 °C global warming scenario. Front. Environ. Sci. 7, 102 (2019).

    • Google Scholar
  • 17.

    Turner, J. et al. Antarctic climate change during the last 50 years. Int. J. Climatol. 25, 279–294 (2005).

    • Google Scholar
  • 18.

    Schoenrock, K. M., Schram, J. B., Amsler, C. D., McClintock, J. B. & Angus, R. A. Climate change impacts on overstory Desmarestia spp. from the western Antarctic Peninsula. Mar. Biol. 162, 377–389 (2015).

    • Google Scholar
  • 19.

    Schoenrock, K. M. et al. Climate change confers a potential advantage to fleshy Antarctic crustose macroalgae over calcified species. J. Exp. Mar. Biol. Ecol. 474, 58–66 (2016).

    • Google Scholar
  • 20.

    Kortsch, S. et al. Climate-driven regime shifts in Arctic marine benthos. Proc. Natl. Acad. Sci. USA 109, 14052–14057 (2012).

  • 21.

    Bartsch, I. et al. Changes in kelp forest biomass and depth distribution in Kongsfjorden, Svalbard, between 1996–1998 and 2012–2014 reflect Arctic warming. Polar Biol. 39, 2021–2036 (2016).

    • Google Scholar
  • 22.

    Mystikou, A. et al. Seaweed biodiversity in the south-western Antarctic Peninsula: surveying macroalgal community composition in the Adelaide Island/Marguerite Bay region over a 35-year time span. Polar Biol. 37, 1607–1619 (2014).

    • Google Scholar
  • 23.

    Griffiths, H. J. Antarctic marine biodiversity – What do we know about the distribution of life in the Southern Ocean? PLoS One 5, e11683 (2010).

  • 24.

    Griffiths, H. J., Danis, B. & Clarke, A. Quantifying Antarctic marine biodiversity: The SCAR-MarBIN data portal. Deep Sea Res. Part II Top. Stud. Oceanogr 58, 18–29 (2011).

    • ADS
    • Google Scholar
  • 25.

    Rückamp, M., Braun, M., Suckro, S. & Blindow, N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob. Planet. Change 79, 99–109 (2011).

    • ADS
    • Google Scholar
  • 26.

    Ferron, F. A., Simões, J. C., Aquino, F. E. & Setzer, A. W. Air temperature time series for King George Island, Antarctica. Pesqui. Antart. Bras. 4, 155–169 (2004).

    • Google Scholar
  • 27.

    Chung, H. Flora and community structure of benthic marine algae in Maxwell Bay, Antarctica Ph. D Thesis, Seoul National University, (1996).

  • 28.

    Chung, H., Oh, Y. S., Lee, I. K. & Kim, D. Y. Macroalgal vegetation of Maxwell Bay in King George Island, Antarctica. Korean J. Phycol. 9, 47–58 (1994).

    • CAS
    • Google Scholar
  • 29.

    Dayton, P. K. Polar Benthos In Polar Oceanography: Chemistry, Biology, and Geology (ed. Smith, W. O.) 631–685 (Academic Press, 1990).

  • 30.

    Scherrer, K. J. N. et al. Mechanistic model identifies increasing light availability due to sea ice reductions as cause for increasing macroalgae cover in the Arctic. Limnol. Oceanogr. 64, 330–341 (2019).

    • ADS
    • Google Scholar
  • 31.

    Klöser, H., Mercuri, G., Laturnus, F., Quartino, M. L. & Wiencke, C. On the competitive balance of macroalgae at Potter Cove (King George Island, South Shetlands). Polar Biol. 14, 11–16 (1994).

    • Google Scholar
  • 32.

    Waters, J. M. et al. Australia’s marine biogeography revisited: Back to the future? Austral. Ecol. 35, 988–992 (2010).

    • Google Scholar
  • 33.

    Wernberg, T. & Goldberg, N. Short-term temporal dynamics of algal species in a subtidal kelp bed in relation to changes in environmental conditions and canopy biomass. Estuar. Coast. Shelf Sci. 76, 265–272 (2008).

    • ADS
    • Google Scholar
  • 34.

    Smykla, J., Wołek, J. & Barcikowski, A. Zonation of vegetation related to penguin rookeries on King George Island, Maritime Antarctic. Arct. Antarct. Alp. Res. 39, 143–151 (2007).

    • Google Scholar
  • 35.

    Eriksson, B. K., Johansson, G. & Snoeijs, P. Long-term changes in the macroalgal vegetation of the inner Gullmar Fjord, Swedish Skagerrak coast. J. Phycol. 38, 284–296 (2002).

    • Google Scholar
  • 36.

    Wootton, J. T. Direct and indirect effects of nutrients on intertidal community structure: variable consequences of seabird guano. J. Exp. Mar. Biol. Ecol. 151, 139–153 (1991).

    • Google Scholar
  • 37.

    Zmudczyńska-Skarbek, K., Balazy, P. & Kuklinski, P. An assessment of seabird influence on Arctic coastal benthic communities. J. Mar. Syst. 144, 48–56 (2015).

    • Google Scholar
  • 38.

    Wiencke, C., Amsler, C. D. & Clayton, M. N. Macroalgae In Biogeographic atlas of the Southern Ocean (eds Claude De Broyer et al.) 66-73 (Scientific Committee on Antarctic Research Cambridge, 2014).

  • 39.

    Wiencke, C. & Clayton, M. N. Antarctic Seaweeds In Synopses of the Antarctic Benthos Vol. 9 (ed Johann-Wolfgang Wägele) 239 (Koeltz Scientific Books, 2002).

  • 40.

    Wulff, A. et al. Biodiversity, biogeography and zonation of marine benthic micro- and macroalgae in the Arctic and Antarctic. Bot. Mar. 52, 491–507 (2009).

    • Google Scholar
  • 41.

    Oliveira, E. C., Absher, T. M., Pellizzari, F. M. & Oliveira, M. C. The seaweed flora of Admiralty Bay, King George Island, Antarctic. Polar Biol. 32, 1639–1647 (2009).

    • Google Scholar
  • 42.

    Klöser, H., Quartino, M. L. & Wiencke, C. Distribution of macroalgae and macroalgal communities in gradients of physical conditions in Potter Cove, King George Island, Antarctica. Hydrobiologia 333, 1–17 (1996).

    • Google Scholar
  • 43.

    Pellizzari, F. et al. Diversity and spatial distribution of seaweeds in the South Shetland Islands, Antarctica: an updated database for environmental monitoring under climate change scenarios. Polar Biol. 40, 1671–1685 (2017) .

    • Google Scholar
  • 44.

    Valdivia, N. et al. Up, down, and all around: scale-dependent spatial variation in rocky-shore communities of Fildes Peninsula, King George Island, Antarctica. PLoS One 9, e100714 (2014).

  • 45.

    Zielinnski, K. Bottom macroalgae of the Admiralty Bay (King George Island, South Shetlands, Antarctica). Pol. Polar Res. 11, 95–131 (1990).

    • Google Scholar
  • 46.

    Sahade, R. et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci. Adv. 1, e1500050 (2015).

  • 47.

    May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471 (1977).

    • ADS
    • Google Scholar
  • 48.

    Sutherland, J. P. Multiple stable points in natural communities. Am. Nat. 108, 859–873 (1974).

    • Google Scholar
  • 49.

    Beisner, B. E., Haydon, D. T. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).

    • Google Scholar
  • 50.

    von der Meden, C. E. O. et al. Long-term change in epibenthic assemblages at the Prince Edward Islands: a comparison between 1988 and 2013. Polar Biol. 40, 2171–2185 (2017).

    • Google Scholar
  • 51.

    Yoon, H. I., Han, M. W., Park, B.-K., Oh, J.-K. & Chang, S.-K. Glaciomarine sedimentation and palaeo-glacial setting of Maxwell Bay and its tributary embayment, Marian Cove, South Shetland Islands, West Antarctica. Mar Geol 140, 265–282 (1997).

    • ADS
    • Google Scholar
  • 52.

    Lim, C. H. Modelling waves and currents in Potter Cove, King George Island, Antarctica PhD Thesis. BIS der Universität Oldenburg (2014).

  • 53.

    Chung, H. et al. Species composition and biomass distribution of benthic macroalgae in Maxwell Bay, King George Island, Antarctica. Korean J. Polar Rec. 11, 1–12 (2000).

    • Google Scholar
  • 54.

    Clarke, K. & Warwick, R. Change in marine communities: anapproach to statistical analysis and interpretation. 2nd edn, 127 (PRIMER-E Ltd, Plymouth, 2001).

  • 55.

    Heaven, C. S. & Scrosati, R. A. Benthic community composition across gradients of intertidal elevation, wave exposure, and ice scour in Atlantic Canada. Mar. Ecol. Prog. Ser. 369, 13–23 (2008).

    • ADS
    • Google Scholar
  • 56.

    Lasiak, T. Multivariate comparisons of rocky infratidal macrofaunal assemblages from replicate exploited and non-exploited localities on the Transkei coast of South Africa. Mar. Ecol. Prog. Ser. 167, 15–23 (1998).

    • ADS
    • Google Scholar
  • 57.

    Dolbeth, M. et al. Anthropogenic and natural disturbance effects on a macrobenthic estuarine community over a 10-year period. Mar. Pollut. Bull. 54, 576–585 (2007).

  • 58.

    Yu, O. H. et al. Spatial variation in macrobenthic communities affected by the thermal discharge volumes of a nuclear power plant on the East Coast of Korea. Ocean Polar Res 35, 299–312 (2013).

    • CAS
    • Google Scholar
  • 59.

    Macleod, C. K., Moltschaniwskyj, N. A. & Crawford, C. M. Ecological and functional changes associated with long-term recovery from organic enrichment. Mar. Ecol. Prog. Ser. 365, 17–24 (2008).

    • ADS
    • Google Scholar
  • 60.

    Shannon, C. E. & Weaver, W. The mathematical theory of communication. 125 (University Illinois Press, 1949).


  • Source: Ecology - nature.com

    Towable sensor free-falls to measure vertical slices of ocean conditions

    The quest for practical fusion energy sources