in

Climate change mitigation potential in sanitation via off-site composting of human waste

  • 1.

    Rose, C., Parker, A., Jefferson, B. & Cartmell, E. The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit. Rev. Environ. Sci. Technol. 45, 1827–1879 (2015).

    • CAS
    • Google Scholar
  • 2.

    Berendes, D. M., Yang, P. J., Lai, A., Hu, D. & Brown, J. Estimation of global recoverable human and animal faecal biomass. Nat. Sustain. 1, 679–685 (2018).

    • Google Scholar
  • 3.

    Graham, J. P. & Polizzotto, M. L. Pit latrines and their impacts on groundwater quality: a systematic review. Environ. Health Perspect. 121, 521–530 (2013).

    • Google Scholar
  • 4.

    World Health Statistics 2018: Monitoring Health for the SDGs, Sustainable Development Goals (WHO, 2018).

  • 5.

    The Sustainable Development Goals Report 2019 (United Nations, 2019); https://doi.org/10.18356/55eb9109-en

  • 6.

    Zhenmin, L. & Espinosa, P. Tackling climate change to accelerate sustainable development. Nat. Clim. Change 9, 493–496 (2019).

    • Google Scholar
  • 7.

    Kulak, M., Shah, N., Sawant, N., Unger, N. & King, H. Technology choices in scaling up sanitation can significantly affect greenhouse gas emissions and the fertiliser gap in India. J. Water Sanit. Hyg. Dev. 7, 466–476 (2017).

    • Google Scholar
  • 8.

    Reid, M. C., Guan, K., Wagner, F. & Mauzerall, D. L. Global methane emissions from pit latrines. Environ. Sci. Technol. 48, 8727–8734 (2014).

    • CAS
    • Google Scholar
  • 9.

    Ryals, R., McNicol, G., Porder, S. & Kramer, S. Greenhouse gas fluxes from human waste management pathways in Haiti. J. Clean. Prod. 226, 106–113 (2019).

    • CAS
    • Google Scholar
  • 10.

    Haug, R. T. in The Practical Handbook of Compost Engineering Vol. 1 Ch. 1 (Routledge, 2018).

  • 11.

    Saunois, M. et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 8, 697–751 (2016).

    • Google Scholar
  • 12.

    van Eekert, M. H. A. et al. Anaerobic digestion is the dominant pathway for pit latrine decomposition and is limited by intrinsic factors. Water Sci. Technol. 79, 2242–2250 (2019).

    • CAS
    • Google Scholar
  • 13.

    Syakila, A. & Kroeze, C. The global nitrous oxide budget revisited. Greenh. Gas Meas. Manage. 1, 17–26 (2011).

    • CAS
    • Google Scholar
  • 14.

    Tian, H. et al. Global soil nitrous oxide emissions since the preindustrial era estimated by an ensemble of terrestrial biosphere models: magnitude, attribution, and uncertainty. Glob. Change Biol. 25, 640–659 (2019).

    • Google Scholar
  • 15.

    Höglund-Isaksson, L. Global anthropogenic methane emissions 2005–2030: technical mitigation potentials and costs. Atmos. Chem. Phys. 12, 9079–9096 (2012).

    • Google Scholar
  • 16.

    Brink, S. et al. Methane Mitigation Opportunities in China: The Woodrow Wilson School’s Graduate Policy Workshop (Princeton Univ., 2013).

  • 17.

    IPCC 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Eggleston, H. S. et al.) (IGES, 2006).

  • 18.

    Preneta, N., Kramer, S., Magloire, B. & Noel, J. M. Thermophilic co-composting of human wastes in Haiti. J. Water Sanit. Hyg. Dev. 3, 649–654 (2013).

    • Google Scholar
  • 19.

    Heijnen, M., Rosa, G., Fuller, J., Eisenberg, J. N. S. & Clasen, T. The geographic and demographic scope of shared sanitation: an analysis of national survey data from low- and middle-income countries. Trop. Med. Int. Health 19, 1334–1345 (2014).

    • Google Scholar
  • 20.

    Berendes, D., Levy, K., Knee, J., Handzel, T. & Hill, V. R. Ascaris and Escherichia coli inactivation in an ecological sanitation system in Port-au-Prince, Haiti. PLoS ONE 10, 1–14 (2015).

    • Google Scholar
  • 21.

    Piceno, Y. M. et al. Bacterial community structure transformed after thermophilically composting human waste in Haiti. PLoS ONE 12, 1–30 (2017).

    • Google Scholar
  • 22.

    Moya, B., Parker, A., Sakrabani, R. & Mesa, B. Evaluating the efficacy of fertilisers derived from human excreta in agriculture and their perception in Antananarivo, Madagascar. Waste Biomass Valorization 10, 941–952 (2019).

    • CAS
    • Google Scholar
  • 23.

    Pardo, G., Moral, R., Aguilera, E. & del Prado, A. Gaseous emissions from management of solid waste: a systematic review. Glob. Change Biol. 21, 1313–1327 (2015).

    • Google Scholar
  • 24.

    Powelson, D. K., Chanton, J., Abichou, T. & Morales, J. Methane oxidation in water-spreading and compost biofilters. Waste Manage. Res. 24, 528–536 (2006).

    • CAS
    • Google Scholar
  • 25.

    Vergara, S. E. & Silver, W. L. Greenhouse gas emissions from windrow composting of organic wastes: patterns and emissions factors. Environ. Res. Lett. 14, 124027 (2019).

    • Google Scholar
  • 26.

    Langergraber, G. & Muellegger, E. Ecological sanitation—a way to solve global sanitation problems? Environ. Int. 31, 433–444 (2005).

    • CAS
    • Google Scholar
  • 27.

    Trimmer, J. T., Miller, D. C. & Guest, J. S. Resource recovery from sanitation to enhance ecosystem services. Nat. Sustain. 2, 681–690 (2019).

    • Google Scholar
  • 28.

    Galatowitsch, S. M. Carbon offsets as ecological restorations. Restor. Ecol. 17, 563–570 (2009).

    • Google Scholar
  • 29.

    Schlesinger, W. & Bernhardt, E. S. Biogeochemistry: An Analysis of Global Change 419–444 (Academic, 2013).

  • 30.

    Black, M. & Fawcett, B. The Last Taboo: Opening the Door on the Global Sanitation Crisis (Cromwell, 2008).

  • 31.

    2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Calvo Buendia, E. et al.) (IPCC, 2019).

  • 32.

    Population Totale, de 18 Ans et Plus Menages et Densites Estimes en 2015 [Total Population, 18 Years and Older Households and Estimated Densities in 2015] (ISHI, 2015); http://www.ihsi.ht/pdf/projection/Estimat_PopTotal_18ans_Menag2015.pdf

  • 33.

    Luquero, F. J. et al. Mortality rates during cholera epidemic, Haiti, 2010–2011. Emerg. Infect. Dis. 22, 410–416 (2016).

    • CAS
    • Google Scholar
  • 34.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: linear and nonlinear mixed effects models. R package v.3.1-141 https://CRAN.R-project.org/package=nlme (2019).

  • 35.

    R: A Language and Environment for Statistical Computing v.3.5.2 (R Core Team, 2018).

  • 36.

    Dubber, D. & Gray, N. F. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. J. Environ. Sci. Health A 45, 1595–1600 (2010).

    • CAS
    • Google Scholar
  • 37.

    Cao, Y. et al. Mitigation of ammonia, nitrous oxide and methane emissions during solid waste composting with different additives: a meta-analysis. J. Clean. Prod. 235, 626–635 (2019).

    • CAS
    • Google Scholar
  • 38.

    Mihelcic, J. R., Fry, L. M. & Shaw, R. Global potential of phosphorus recovery from human urine and feces. Chemosphere 84, 832–839 (2011).

    • CAS
    • Google Scholar
  • 39.

    Ryals, R., Kaiser, M., Torn, M. S., Berhe, A. A. & Silver, W. L. Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biol. Biochem. 68, 52–61 (2014).

    • CAS
    • Google Scholar
  • 40.

    Ryals, R. & Silver, W. L. Effects of organic matter amendments on net primary productivity and greenhouse gas emissions in annual grasslands. Ecol. Appl. 23, 46–59 (2013).

    • Google Scholar
  • 41.

    Bargout, R. N. & Raizada, M. N. Soil nutrient management in Haiti, pre-Columbus to the present day: lessons for future agricultural interventions. Agric. Food Secur. 2, 1–20 (2013).

    • Google Scholar
  • 42.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds. Stocker, T. F. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2013).

  • 43.

    Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).

    • Google Scholar
  • 44.

    FAOSTAT Statistical Database (FAO, 2019); http://faostat.fao.org/

  • 45.

    Peal, A., Evans, B., Blackett, I., Hawkins, P. & Heymans, C. Fecal sludge management (FSM): analytical tools for assessing FSM in cities. J. Water Sanit. Hyg. De. 4, 371–383 (2014).

    • Google Scholar

  • Source: Ecology - nature.com

    Machine learning helps map global ocean communities

    Lighting the way to better battery technology