in

Impacts of hydrothermal plume processes on oceanic metal cycles and transport

  • 1.

    German, C. R. & Seyfried, W. E. in Treatise on Geochemistry 2nd Edition – Volume 8: The Oceans and Marine Geochemistry (eds Mottl, M. J. & Elderfield, H.) 191–233 (Elsevier, 2014).

  • 2.

    Tagliabue, A. et al. Hydrothermal contribution to the oceanic dissolved iron inventory. Nat. Geosci. 3, 252–256 (2010).

    • Google Scholar
  • 3.

    Yücel, M., Gartman, A., Chan, C. S. & Luther, G. W. Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nat. Geosci. 4, 367–371 (2011).

    • Google Scholar
  • 4.

    Gartman, A., Findlay, A. J. & Luther, G. W. Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chem. Geol. 366, 32–41 (2014).

    • Google Scholar
  • 5.

    Findlay, A. J., Gartman, A., Shaw, T. J. & Luther, G. W. Trace metal concentration and partitioning in the first 1.5 m of hydrothermal vent plumes along the Mid-Atlantic Ridge: TAG, Snakepit, and Rainbow. Chem. Geol. 412, 117–131 (2015).

    • Google Scholar
  • 6.

    Bennett, S. A. et al. Dissolved and particulate organic carbon in hydrothermal plumes from the East Pacific Rise, 9°50′N. Deep Sea Res. Pt I 58, 922–931 (2011).

    • Google Scholar
  • 7.

    Toner, B. M. et al. Preservation of iron(ii) by carbon-rich matrices in a hydrothermal plume. Nat. Geosci. 2, 197–201 (2009).

    • Google Scholar
  • 8.

    Sander, S. G. & Koschinsky, A. Metal flux from hydrothermal vents increased by organic complexation. Nat. Geosci. 4, 145–150 (2011).

    • Google Scholar
  • 9.

    Lough, A. J. M. et al. Soluble iron conservation and colloidal iron dynamics in a hydrothermal plume. Chem. Geol. 511, 225–237 (2019).

    • Google Scholar
  • 10.

    Li, M. et al. Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nat. Commun. 5, 3192 (2014).

    • Google Scholar
  • 11.

    Breier, J. A. et al. Sulfur, sulfides, oxides and organic matter aggregated in submarine hydrothermal plumes at 9°50′N East Pacific Rise. Geochem. Cosmochim. Acta 88, 216–236 (2012).

    • Google Scholar
  • 12.

    Hoffman, C. L. et al. Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15° S. Mar. Chem. 201, 183–197 (2018).

    • Google Scholar
  • 13.

    Fitzsimmons, J. N. et al. Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nat. Geosci. 10, 195–201 (2017).

    • Google Scholar
  • 14.

    Resing, J. A. et al. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203 (2015).

    • Google Scholar
  • 15.

    German, C. R. & Von Damm, K. L. in Treatise on Geochemistry: The Oceans and Marine Geochemistry (eds Holland, H. D. & Turekian, K. K.) 181–222 (Elsevier, 2004).

  • 16.

    Saito, M. A. et al. Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source. Nat. Geosci. 6, 775–779 (2013).

    • Google Scholar
  • 17.

    Hrischeva, E. & Scott, S. D. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta 71, 3476–3497 (2007).

    • Google Scholar
  • 18.

    Fitzsimmons, J. N., Boyle, E. A. & Jenkins, W. J. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean. Proc. Natl Acad. Sci. USA 111, 16654–16661 (2014).

    • Google Scholar
  • 19.

    Lee, J. M., Heller, M. I. & Lam, P. J. Size distribution of particulate trace elements in the U. S. GEOTRACES Eastern Pacific Zonal Transect (GP16). Mar. Chem. 201, 108–123 (2017).

    • Google Scholar
  • 20.

    Middag, R., de Baar, H. J. W., Laan, P. & Klunder, M. B. Fluvial and hydrothermal input of manganese into the Arctic Ocean. Geochim. Cosmochim. Acta 75, 2393–2408 (2011).

    • Google Scholar
  • 21.

    Klunder, M. B., Laan, P., Middag, R., De Baar, H. J. W. & Bakker, K. Dissolved iron in the Arctic Ocean: important role of hydrothermal sources, shelf input and scavenging removal. J. Geophys. Res. Oceans 117, C04014 (2012).

    • Google Scholar
  • 22.

    Kipp, L. E. et al. Radium isotopes as tracers of hydrothermal inputs and neutrally buoyant plume dynamics in the deep ocean. Mar. Chem. 201, 51–65 (2017).

    • Google Scholar
  • 23.

    Lupton, J. Hydrothermal helium plumes in the Pacific Ocean. J. Geophys. Res. 103, 15853–15868 (1998).

    • Google Scholar
  • 24.

    Hollenbach, D. F. & Herndon, J. M. Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field. Proc. Natl Acad. Sci. USA 98, 11085–11090 (2001).

    • Google Scholar
  • 25.

    Neuholz, R. et al. Near-field hydrothermal plume dynamics at Brothers Volcano (Kermadec Arc): a short-lived radium isotope study. Chem. Geol. 533, 119379 (2020).

    • Google Scholar
  • 26.

    Von Damm, K. L., Edmond, J. M., Grant, B. & Measures, C. I. Chemistry of submarine hydrothermal solutions at 21° N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).

    • Google Scholar
  • 27.

    Haymon, R. M. & Kastner, M. Caminite: a new magnesium-hydroxide-sulfate-hydrate mineral found in a submarine hydrothermal deposit, East Pacific Rise, 21° N. Am. Mineral. 71, 819–825 (1986).

    • Google Scholar
  • 28.

    Edmonds, H. N. & German, C. R. Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 68, 759–772 (2004).

    • Google Scholar
  • 29.

    Klevenz, V. et al. Geochemistry of vent fluid particles formed during initial hydrothermal fluid-seawater mixing along the Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 12, Q0AE05 (2012).

    • Google Scholar
  • 30.

    Seyfried, W. E., Pester, N. J., Ding, K. & Rough, M. Vent fluid chemistry of the Rainbow hydrothermal system (36° N, MAR): phase equilibria and in situ pH controls on subseafloor alteration processes. Geochim. Cosmochim. Acta 75, 1574–1593 (2011).

    • Google Scholar
  • 31.

    Waeles, M. et al. On the early fate of hydrothermal iron at deep-sea vents: a reassessment after in situ filtration. Geophys. Res. Lett. 44, 4233–4240 (2017).

    • Google Scholar
  • 32.

    Rudnicki, M. D. & Elderfield, H. Helium, radon and manganese at the TAG and Snakepit hydrothermal vent fields, 26° and 23° N, Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 113, 307–321 (1992).

    • Google Scholar
  • 33.

    Chin, C. S. et al. In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge. J. Geophys. Res. Solid Earth 99, 4969–4984 (1994).

    • Google Scholar
  • 34.

    Mandernack, K. W. & Tebo, B. M. Manganese scavenging and oxidation at hydrothermal vents and in vent plumes. Geochim. Cosmochim. Acta 57, 3907–3923 (1993).

    • Google Scholar
  • 35.

    Wang, H., Yang, Q., Ji, F., Lilley, M. D. & Zhou, H. The geochemical characteristics and Fe (II) oxidation kinetics of hydrothermal plumes at the Southwest Indian Ridge. Mar. Chem. 134–135, 29–35 (2012).

    • Google Scholar
  • 36.

    Lam, P. J. et al. Methods for analyzing the concentration and speciation of major and trace elements in marine particles. Prog. Oceanogr. 133, 32–42 (2015).

    • Google Scholar
  • 37.

    Hatta, M. et al. An overview of dissolved Fe and Mn distributions during the 2010–2011 U.S. GEOTRACES North Atlantic cruises: GEOTRACES GA03. Deep Sea Res. Pt II 116, 117–129 (2015).

    • Google Scholar
  • 38.

    Jenkins, W. J. et al. The deep distributions of helium isotopes, radiocarbon, and noble gases along the U.S. GEOTRACES East Pacific Zonal Transect (GP16). Mar. Chem. 201, 167–182 (2017).

    • Google Scholar
  • 39.

    Metz, S. & Trefry, J. H. Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim. Cosmochim. Acta 64, 2267–2279 (2000).

    • Google Scholar
  • 40.

    Field, M. P. & Sherrell, R. M. Dissolved and particulate Fe in a hydrothermal plume at 9°45′N, East Pacific Rise. Geochim. Cosmochim. Acta 64, 619–628 (2000).

    • Google Scholar
  • 41.

    Statham, P. J., German, C. R. & Connelly, D. P. Iron (II) distribution and oxidation kinetics in hydrothermal plumes at the Kairei and Edmond vent sites, Indian Ocean. Earth Planet. Sci. Lett. 236, 588–896 (2005).

    • Google Scholar
  • 42.

    Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 51–59 (2017).

    • Google Scholar
  • 43.

    Campbell, A. C., Gieskes, J. M., Lupton, J. E. & Lonsdale, P. F. Manganese geohemistry in the Guaymas Basin, Gulf of California. Geochim. Cosmochim. Acta 52, 345–357 (1988).

    • Google Scholar
  • 44.

    Dick, G. J. & Tebo, B. M. Microbial diversity and biogeochemistry of the Guaymas deep-sea hydrothermal plume. Environ. Microbiol. 12, 1334–1347 (2010).

    • Google Scholar
  • 45.

    Dick, G. J. et al. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front. Microbiol. 4, 124 (2013).

    • Google Scholar
  • 46.

    Cowen, J. P., Massoth, G. J. & Feely, R. A. Scavenging rates of dissolved manganese in a hydrothermal vent plume. Deep Sea Res. Pt A 37, 1619–1637 (1990).

    • Google Scholar
  • 47.

    Kleint, C., Pichler, T. & Koschinsky, A. Geochemical characteristics, speciation and size-fractionation of iron (Fe) in two marine shallow-water hydrothermal systems, Dominica, Lesser Antilles. Chem. Geol. 454, 44–53 (2017).

    • Google Scholar
  • 48.

    Martin, J. H. & Knauer, G. A. Manganese cycling in northeast Pacific waters. Earth Planet. Sci. Lett. 51, 266–274 (1980).

    • Google Scholar
  • 49.

    Boyd, P. W., Ellwood, M. J., Tagliabue, A. & Twining, B. S. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat. Geosci. 10, 167–173 (2017).

    • Google Scholar
  • 50.

    Bishop, J. K. B. & Fleisher, M. Q. Particulate manganese dynamics in Gulf Stream warm-core rings and surrounding waters of the N. W. Atlantic. Geochim. Cosmochim. Acta 51, 2807–2825 (1987).

    • Google Scholar
  • 51.

    van Hulten, M. et al. Manganese in the west Atlantic Ocean in the context of the first global circulation model of manganese. Biogeosciences 14, 1123–1152 (2017).

    • Google Scholar
  • 52.

    Cron, B. R. et al. Dynamic biogeochemistry of the particulate sulfur pool in a buoyant dep-sea hydrothermal plume. ACS Earth Space Chem. 4, 168–182 (2020).

    • Google Scholar
  • 53.

    Bergquist, B. A., Wu, J. & Boyle, E. A. Variability in oceanic dissolved iron is dominated by the colloidal fraction. Geochim. Cosmochim. Acta 71, 2960–2974 (2007).

    • Google Scholar
  • 54.

    Rudnicki, M. D. & Elderfield, H. A chemical model of the bouyant and neutrally bouyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 57, 2939–2957 (1993).

    • Google Scholar
  • 55.

    Massoth, G. J. et al. Manganese and iron in hydrothermal plumes resulting from the 1996 Gorda Ridge event. Deep Sea Res. Pt II 45, 2683–2712 (1998).

    • Google Scholar
  • 56.

    Coale, K. H., Chin, C. S., Massoth, G. J., Johnson, K. S. & Baker, E. T. In situ chemical mapping of dissolved iron and manganese in hydrothermal plumes. Nature 352, 325–328 (1991).

    • Google Scholar
  • 57.

    Millero, F. J., Sotolongo, S. & Izaguirre, M. The oxidation kinetics Fe(ii) in seawater. Geochim. Cosmochim. Acta 51, 793–801 (1987).

    • Google Scholar
  • 58.

    Bennett, S. A. et al. Iron isotope fractionation in a buoyant hydrothermal plume, 5° S Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 73, 5619–5634 (2009).

    • Google Scholar
  • 59.

    Rouxel, O., Toner, B. M., Manganini, S. J. & German, C. R. Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9° 50’ N. Chem. Geol. 441, 212–234 (2016).

    • Google Scholar
  • 60.

    Little, S. H., Vance, D., McManus, J., Severmann, S. & Lyons, T. W. Copper isotope signatures in modern marine sediments. Geochim. Cosmochim. Acta 212, 253–273 (2017).

    • Google Scholar
  • 61.

    Roshan, S., Wu, J. & Jenkins, W. J. Long-range transport of hydrothermal dissolved Zn in the tropical South Pacific. Mar. Chem. 183, 25–32 (2016).

    • Google Scholar
  • 62.

    Coogan, L. A. & Dosso, S. An internally consistent, probabilistic, determination of ridge-axis hydrothermal fluxes from basalt-hosted systems. Earth Planet Sci. Lett. 323–324, 92–101 (2012).

    • Google Scholar
  • 63.

    Elderfield, H. & Schultz, A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu. Rev. Earth Planet. Sci. 24, 191–224 (1996).

    • Google Scholar
  • 64.

    Feely, R. A. et al. The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater. Geophys. Res. Lett. 25, 2253–2256 (1988).

    • Google Scholar
  • 65.

    Feely, R. A. et al. Composition and sedimentation of hydrothermal plume particles from north Cleft segment, Juan de Fuca Ridge. J. Geophys. Res. 99, 4985–5006 (1994).

    • Google Scholar
  • 66.

    Sarradin, P. M. et al. Speciation of dissolved copper within an active hydrothermal edifice on the Lucky Strike vent field (MAR, 37° N). Sci. Total Environ. 407, 869–878 (2009).

    • Google Scholar

  • Source: Ecology - nature.com

    Machine learning helps map global ocean communities

    Lighting the way to better battery technology