
Majumdar, S. S. et al. A study on lead adsorption by Mucor rouxii biomass. Desalination. 251, 96–102 (2010).
Wijayawardena, M. A. A. et al. Influence of ageing on lead bioavailability in soils: a swine study. Environ. Sci. Pollut. Res. 22, 8979–8988 (2015).
Velásquez, L. & Dussan, J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167, 713–716 (2009).
Wingenfelder, U., Hansen, C., Furrer, G. & Schulin, R. Removal of Heavy Metals from Mine Waters by Natural Zeolites. Environ. Sci. Technol. 39, 4606–4613 (2005).
Miransari, M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol. Adv. 29, 645–653 (2011).
Dhankhar, R. & Hooda, A. Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ. Technol. 32, 467–491 (2011).
Wang, X., Cai, Z., Zhou, Q., Zhang, Z. & Chen, C. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnol. Bioeng. 109, 426–433 (2012).
Wang, N. et al. Comparative studies on Pb (II) biosorption with three spongy microbe-based biosorbents: High performance, selectivity and application. J. Hazard. Mater. 373, 39–49 (2019).
Anand, P., Isar, J., Saran, S. & Saxena, R. K. Bioaccumulation of copper by Trichoderma viride. Bioresour. Technol 97, 1018–1025 (2006).
Iskandar, N. L., Zainudin, N. A. I. M. & Tan, S. G. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J. Environ. Sci 23, 824–830 (2011).
Wang, J. & Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol. Adv 24, 427–451 (2006).
Zeng, X. et al. Bioleaching of heavy metals from contaminated sediments by the Aspergillus niger strain SY1. J. Soils Sediments. 15, 1029–1038 (2015).
Xu, X., Hao, R., Wang, M., Ding, Y. & Lu, A. Effect of external electric current on adsorption of lead by Penicillium polonicum. Geomicrobiol. J 36, 737–746 (2019).
Wang, Y. et al. Removal and tolerance mechanism of Pb by a filamentous fungus: A case study. Chemosphere 225, 200–208 (2019).
Fomina, M. et al. Role of Oxalic Acid Overexcretion in Transformations of Toxic Metal Minerals by Beauveria caledonica. Appl. Environ. Microbiol 71, 371–381 (2005).
Sazanova, K. et al. Organic Acids Induce Tolerance to Zinc- and Copper-Exposed Fungi Under Various Growth Conditions. Curr. Microbiol 70, 520–527 (2015).
Fomina, M. & Gadd, G. M. Biosorption: current perspectives on concept, definition and application. Bioresour. Technol 160, 3–14 (2014).
Oladipo, O. G., Awotoye, O. O., Olayinka, A., Bezuidenhout, C. C. & Maboeta, M. S. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz. J. Microbiol 49, 29–37 (2018).
Chen, S. H., Cheow, Y. L., Ng, S. L. & Ting, A. S. Y. Mechanisms for metal removal established via electron microscopy and spectroscopy: a case study on metal tolerant fungi Penicillium simplicissimum. J. Hazard. Mater 362, 394–402 (2019).
Casalino, E., Sblano, C., Calzaretti, G. & Landriscina, C. Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver. Toxicol 217, 240–245 (2006).
Xu, P. et al. Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol 98, 6409–6418 (2014).
Zhang, S. et al. Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses. Chemosphere. 150, 33–39 (2016).
Yang, L., Hao, R., Wu, F. & Xiao, Y. Isolation of lead-tolerant fungus and the adsorption effect to Pb2 +. Acta Sci Circumstantiae 32, 2366–2374 (2012).
Neethu, S. et al. Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum, ARA 10 isolated from Chetomorpha antennina, and its antibacterial efficacy against Salmonella enterica, serovar Typhimurium. J. Photochem. Photobiol. B. Biol 180, 175–185 (2018).
Chen, A. et al. Extracellular secretions of Phanerochaete chrysosporium on Cd toxicity. Int. Biodeterior. Biodegrad. 105, 73–79 (2015).
Baldrian, P. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol. 32, 78–91 (2003).
Bano, A. et al. Biosorption of heavy metals by obligate halophilic fungi. Chemosphere. 199, 218–222 (2018).
Anahid, S., Yaghmaei, S. & Ghobadinejad, Z. Heavy metal tolerance of fungi. Sci. Iran. 18(29), 502–508 (2011).
Mancilla, N. & D’Antonio, M. C. Gonza´lez-Baro´, A. C. & Baran, E. J. Vibrational spectra of lead(II) oxalate. J Raman Spectrosc 40, 2050–2052 (2009).
Pourmortazavi, S. M., Hajimirsadeghi, S. S., Rahimi-Nasrabadi, M. & Zahedi, M. M. Taguchi robust design to optimize synthesis of lead oxalate nano-disks. Mat. Sci. Semicon Proc. 16, 131–137 (2013).
Qian, X., Fang, C., Huang, M. & Achal, V. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. J. Cleaner Prod 164, 198–208 (2017).
Wei, W., Cui, J. & Wei, Z. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite. Chemosphere. 105, 14–23 (2014).
Avinash, B., Supraja, N., Prasad, T. N. V. K. V. & Raj, M. A. In-vitro Anthelmintic and Acaricidal Activity of Nicotiana tabacum Leaf Extract Mediated AgNPs Against Rhipicephalus (Boophilus) microplus. Int. J. Pure App. Biosci. 5, 1013–1022 (2017).
Aytar, P., Gedikli, S., Buruk, Y., Cabuk, A. & Burnak, N. Lead and nickel biosorption with a fungal biomass isolated from metal mine drainage: Box–Behnken experimental design. Int. J. Environ. Sci. Technol. 11, 1631–1640 (2014).
Miretzky, P. & Fernandez-Cirelli, A. Phosphates for Pb immobilization in soils: a review. Environ. Chem. Lett. 6, 121–133 (2008).
Rhee, Y. J., Hillier, S. & Gadd, G. M. Lead Transformation to Pyromorphite by Fungi. Curr. Biol. 22, 237–241 (2012).
Rhee, Y. J., Hillier, S., Pendlowski, H. & Gadd, G. M. Fungal transformation of metallic lead to pyromorphite in liquid medium. Chemosphere. 113, 17–21 (2014).
Liang, X., Csetenyi, L. & Gadd, G. M. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates. Appl. Microbiol. Biotechnol. 100, 5141–5151 (2016).
Li, N. et al. Response of extracellular carboxylic and thiol ligands (oxalate, thiol compounds) to Pb2+ stress in Phanerochaete chrysosporium. Environ. Sci. Pollut. Res. 22, 12655–12663 (2015).
Montiel-Rozas, M. M., Madejón, E. & Madejón, P. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environ. Pollut. 216, 273–281 (2016).
Hedström, H., Olin, Å., Svanström, P. & Åslin, E. The complex formation between Pb2+ and the oxalate and hydrogen oxalate ions a solubility study. J. Inorg. Nucl. Chem. 39, 1191–1194 (1977).
Bridges, C. C. & Zalups, R. K. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204, 274–308 (2005).
Flora, S. J. S., Mittal, M. & Mehta, A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian. J. Med. Res. 128, 501–523 (2008).
Mäkelä, M., Galkin, S., Hatakka, A. & Lundell, T. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb. Technol. 30, 542–549 (2002).
Jarosz-Wilkolazka, A. & Gadd, G. M. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere. 52, 541–547 (2003).
Machuca, A., Napoleao, D. & Milagres, A. M. F. Detection of metal-chelating compounds from wood-rotting fungi Trametes versicolorand Wolfiporia cocos. World. J. Microbiol. Biotechnol 17, 687–690 (2001).
Gola, D. et al. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour. Technol 218, 388–396 (2016).
Wu, J. & Li, Q. Study on mechanism of lead biosorption by Phanerochaete chrysosporium. Acta Sci. Circumstantiae 21, 291–295 (2001).
Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 212, 475–486 (2001).
Lloyd, J. R. & Renshaw, J. C. Bioremediation of radioactive waste: Radionuclide-microbe interactions in laboratory and field-scale studies. Curr. Opin. Biotechnol. 16, 254–260 (2005).
Southam, G., Lengke, M. F., Fairbrother, L. & Reith, F. The Biogeochemistry of Gold. Elements 5, 303–307 (2009).
Barkay, T. & Irene, W. Microbial Transformations of Mercury: Potentials, Challenges, and Achievements in Controlling Mercury Toxicity in the Environment. Adv. Appl. Microbiol 57, 1–52 (2005).
Maliszewska, I. & Juraszek, A. & Bielska, K. Green Synthesis and Characterization of Silver Nanoparticles Using Ascomycota Fungi Penicillium nalgiovense AJ12. J. Cluster Sci. 25, 989–1004 (2013).
Gadd, G. M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiol 156, 609–643 (2010).
Eide, D. J. Metal ion transport in eukaryotic microorganisms: Insights from Saccharomyces cerevisiae. Adv. Microb. Physiol 43, 1–38 (2000).
Avery, S. V. Metal toxicity in yeasts and the role of oxidative stress. Adv. Appl. Microbiol 49, 111–142 (2001).
Wang, M., Hao, R. & Ding, Y. Response mechanism of electric current on adsorption and immobilization of lead by Pencillium polonicum. Acta Petrologica Et Mineralogica 36, 858–864 (2017).
Zougagh, M., Torres, A. Gd, Alonso, E. V. & Pavon, J. M. C. Automatic on line preconcentration and determination of lead in water by ICP-AES using a TS-microcolumn. Talanta. 62, 503–510 (2004).
Fan, T. et al. Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium Simplicissimum: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 160, 655–661 (2008).
Ding, Y., Hao, R., Xu, X., Lu, A. & Xu, H. Improving immobilization of Pb(II) ions by Aspergillus niger cooperated with photoelectron by anatase under visible light irradiation. Geomicrobiol. J. 36, 591–599 (2019).
Source: Ecology - nature.com