in

Removal mechanism of Pb(II) by Penicillium polonicum: immobilization, adsorption, and bioaccumulation

  • .

    Majumdar, S. S. et al. A study on lead adsorption by Mucor rouxii biomass. Desalination. 251, 96–102 (2010).

    CAS  Google Scholar 

  • 2.

    Wijayawardena, M. A. A. et al. Influence of ageing on lead bioavailability in soils: a swine study. Environ. Sci. Pollut. Res. 22, 8979–8988 (2015).

    CAS  Google Scholar 

  • 3.

    Velásquez, L. & Dussan, J. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J. Hazard. Mater. 167, 713–716 (2009).

    PubMed  Google Scholar 

  • 4.

    Wingenfelder, U., Hansen, C., Furrer, G. & Schulin, R. Removal of Heavy Metals from Mine Waters by Natural Zeolites. Environ. Sci. Technol. 39, 4606–4613 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Miransari, M. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol. Adv. 29, 645–653 (2011).

    CAS  PubMed  Google Scholar 

  • 6.

    Dhankhar, R. & Hooda, A. Fungal biosorption–an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ. Technol. 32, 467–491 (2011).

    CAS  PubMed  Google Scholar 

  • 7.

    Wang, X., Cai, Z., Zhou, Q., Zhang, Z. & Chen, C. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnol. Bioeng. 109, 426–433 (2012).

    CAS  PubMed  Google Scholar 

  • 8.

    Wang, N. et al. Comparative studies on Pb (II) biosorption with three spongy microbe-based biosorbents: High performance, selectivity and application. J. Hazard. Mater. 373, 39–49 (2019).

    CAS  PubMed  Google Scholar 

  • 9.

    Anand, P., Isar, J., Saran, S. & Saxena, R. K. Bioaccumulation of copper by Trichoderma viride. Bioresour. Technol 97, 1018–1025 (2006).

    CAS  PubMed  Google Scholar 

  • 0.

    Iskandar, N. L., Zainudin, N. A. I. M. & Tan, S. G. Tolerance and biosorption of copper (Cu) and lead (Pb) by filamentous fungi isolated from a freshwater ecosystem. J. Environ. Sci 23, 824–830 (2011).

    CAS  Google Scholar 

  • 1.

    Wang, J. & Chen, C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol. Adv 24, 427–451 (2006).

    CAS  PubMed  Google Scholar 

  • 2.

    Zeng, X. et al. Bioleaching of heavy metals from contaminated sediments by the Aspergillus niger strain SY1. J. Soils Sediments. 15, 1029–1038 (2015).

    CAS  Google Scholar 

  • 3.

    Xu, X., Hao, R., Wang, M., Ding, Y. & Lu, A. Effect of external electric current on adsorption of lead by Penicillium polonicum. Geomicrobiol. J 36, 737–746 (2019).

    CAS  Google Scholar 

  • 4.

    Wang, Y. et al. Removal and tolerance mechanism of Pb by a filamentous fungus: A case study. Chemosphere 225, 200–208 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 5.

    Fomina, M. et al. Role of Oxalic Acid Overexcretion in Transformations of Toxic Metal Minerals by Beauveria caledonica. Appl. Environ. Microbiol 71, 371–381 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Sazanova, K. et al. Organic Acids Induce Tolerance to Zinc- and Copper-Exposed Fungi Under Various Growth Conditions. Curr. Microbiol 70, 520–527 (2015).

    CAS  PubMed  Google Scholar 

  • 7.

    Fomina, M. & Gadd, G. M. Biosorption: current perspectives on concept, definition and application. Bioresour. Technol 160, 3–14 (2014).

    CAS  PubMed  Google Scholar 

  • 8.

    Oladipo, O. G., Awotoye, O. O., Olayinka, A., Bezuidenhout, C. C. & Maboeta, M. S. Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Braz. J. Microbiol 49, 29–37 (2018).

    CAS  PubMed  Google Scholar 

  • 19.

    Chen, S. H., Cheow, Y. L., Ng, S. L. & Ting, A. S. Y. Mechanisms for metal removal established via electron microscopy and spectroscopy: a case study on metal tolerant fungi Penicillium simplicissimum. J. Hazard. Mater 362, 394–402 (2019).

    CAS  PubMed  Google Scholar 

  • 20.

    Casalino, E., Sblano, C., Calzaretti, G. & Landriscina, C. Acute cadmium intoxication induces alpha-class glutathione S-transferase protein synthesis and enzyme activity in rat liver. Toxicol 217, 240–245 (2006).

    CAS  Google Scholar 

  • 2.

    Xu, P. et al. Heavy metal-induced glutathione accumulation and its role in heavy metal detoxification in Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol 98, 6409–6418 (2014).

    CAS  PubMed  Google Scholar 

  • 22.

    Zhang, S. et al. Improvement of tolerance to lead by filamentous fungus Pleurotus ostreatus HAU-2 and its oxidative responses. Chemosphere. 150, 33–39 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 23.

    Yang, L., Hao, R., Wu, F. & Xiao, Y. Isolation of lead-tolerant fungus and the adsorption effect to Pb2 +. Acta Sci Circumstantiae 32, 2366–2374 (2012).

    CAS  Google Scholar 

  • 24.

    Neethu, S. et al. Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum, ARA 10 isolated from Chetomorpha antennina, and its antibacterial efficacy against Salmonella enterica, serovar Typhimurium. J. Photochem. Photobiol. B. Biol 180, 175–185 (2018).

    CAS  Google Scholar 

  • 25.

    Chen, A. et al. Extracellular secretions of Phanerochaete chrysosporium on Cd toxicity. Int. Biodeterior. Biodegrad. 105, 73–79 (2015).

    CAS  Google Scholar 

  • 26.

    Baldrian, P. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol. 32, 78–91 (2003).

    CAS  Google Scholar 

  • 27.

    Bano, A. et al. Biosorption of heavy metals by obligate halophilic fungi. Chemosphere. 199, 218–222 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 28.

    Anahid, S., Yaghmaei, S. & Ghobadinejad, Z. Heavy metal tolerance of fungi. Sci. Iran. 18(29), 502–508 (2011).

    CAS  Google Scholar 

  • 29.

    Mancilla, N. & D’Antonio, M. C. Gonza´lez-Baro´, A. C. & Baran, E. J. Vibrational spectra of lead(II) oxalate. J Raman Spectrosc 40, 2050–2052 (2009).

    ADS  CAS  Google Scholar 

  • 30.

    Pourmortazavi, S. M., Hajimirsadeghi, S. S., Rahimi-Nasrabadi, M. & Zahedi, M. M. Taguchi robust design to optimize synthesis of lead oxalate nano-disks. Mat. Sci. Semicon Proc. 16, 131–137 (2013).

    CAS  Google Scholar 

  • 3.

    Qian, X., Fang, C., Huang, M. & Achal, V. Characterization of fungal-mediated carbonate precipitation in the biomineralization of chromate and lead from an aqueous solution and soil. J. Cleaner Prod 164, 198–208 (2017).

    CAS  Google Scholar 

  • 32.

    Wei, W., Cui, J. & Wei, Z. Effects of low molecular weight organic acids on the immobilization of aqueous Pb(II) using phosphate rock and different crystallized hydroxyapatite. Chemosphere. 105, 14–23 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 33.

    Avinash, B., Supraja, N., Prasad, T. N. V. K. V. & Raj, M. A. In-vitro Anthelmintic and Acaricidal Activity of Nicotiana tabacum Leaf Extract Mediated AgNPs Against Rhipicephalus (Boophilus) microplus. Int. J. Pure App. Biosci. 5, 1013–1022 (2017).

    Google Scholar 

  • 34.

    Aytar, P., Gedikli, S., Buruk, Y., Cabuk, A. & Burnak, N. Lead and nickel biosorption with a fungal biomass isolated from metal mine drainage: Box–Behnken experimental design. Int. J. Environ. Sci. Technol. 11, 1631–1640 (2014).

    CAS  Google Scholar 

  • 35.

    Miretzky, P. & Fernandez-Cirelli, A. Phosphates for Pb immobilization in soils: a review. Environ. Chem. Lett. 6, 121–133 (2008).

    CAS  Google Scholar 

  • 36.

    Rhee, Y. J., Hillier, S. & Gadd, G. M. Lead Transformation to Pyromorphite by Fungi. Curr. Biol. 22, 237–241 (2012).

    CAS  PubMed  Google Scholar 

  • 37.

    Rhee, Y. J., Hillier, S., Pendlowski, H. & Gadd, G. M. Fungal transformation of metallic lead to pyromorphite in liquid medium. Chemosphere. 113, 17–21 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 38.

    Liang, X., Csetenyi, L. & Gadd, G. M. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates. Appl. Microbiol. Biotechnol. 100, 5141–5151 (2016).

    CAS  PubMed  Google Scholar 

  • 39.

    Li, N. et al. Response of extracellular carboxylic and thiol ligands (oxalate, thiol compounds) to Pb2+ stress in Phanerochaete chrysosporium. Environ. Sci. Pollut. Res. 22, 12655–12663 (2015).

    CAS  Google Scholar 

  • 40.

    Montiel-Rozas, M. M., Madejón, E. & Madejón, P. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environ. Pollut. 216, 273–281 (2016).

    CAS  PubMed  Google Scholar 

  • 4.

    Hedström, H., Olin, Å., Svanström, P. & Åslin, E. The complex formation between Pb2+ and the oxalate and hydrogen oxalate ions a solubility study. J. Inorg. Nucl. Chem. 39, 1191–1194 (1977).

    Google Scholar 

  • 42.

    Bridges, C. C. & Zalups, R. K. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204, 274–308 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Flora, S. J. S., Mittal, M. & Mehta, A. Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian. J. Med. Res. 128, 501–523 (2008).

    CAS  PubMed  Google Scholar 

  • 44.

    Mäkelä, M., Galkin, S., Hatakka, A. & Lundell, T. Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb. Technol. 30, 542–549 (2002).

    Google Scholar 

  • 45.

    Jarosz-Wilkolazka, A. & Gadd, G. M. Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere. 52, 541–547 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 46.

    Machuca, A., Napoleao, D. & Milagres, A. M. F. Detection of metal-chelating compounds from wood-rotting fungi Trametes versicolorand Wolfiporia cocos. World. J. Microbiol. Biotechnol 17, 687–690 (2001).

    CAS  Google Scholar 

  • 47.

    Gola, D. et al. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour. Technol 218, 388–396 (2016).

    CAS  PubMed  Google Scholar 

  • 48.

    Wu, J. & Li, Q. Study on mechanism of lead biosorption by Phanerochaete chrysosporium. Acta Sci. Circumstantiae 21, 291–295 (2001).

    CAS  Google Scholar 

  • 49.

    Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta. 212, 475–486 (2001).

    CAS  PubMed  Google Scholar 

  • 50.

    Lloyd, J. R. & Renshaw, J. C. Bioremediation of radioactive waste: Radionuclide-microbe interactions in laboratory and field-scale studies. Curr. Opin. Biotechnol. 16, 254–260 (2005).

    CAS  PubMed  Google Scholar 

  • 5.

    Southam, G., Lengke, M. F., Fairbrother, L. & Reith, F. The Biogeochemistry of Gold. Elements 5, 303–307 (2009).

    CAS  Google Scholar 

  • 52.

    Barkay, T. & Irene, W. Microbial Transformations of Mercury: Potentials, Challenges, and Achievements in Controlling Mercury Toxicity in the Environment. Adv. Appl. Microbiol 57, 1–52 (2005).

    CAS  PubMed  Google Scholar 

  • 53.

    Maliszewska, I. & Juraszek, A. & Bielska, K. Green Synthesis and Characterization of Silver Nanoparticles Using Ascomycota Fungi Penicillium nalgiovense AJ12. J. Cluster Sci. 25, 989–1004 (2013).

    Google Scholar 

  • 54.

    Gadd, G. M. Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiol 156, 609–643 (2010).

    CAS  Google Scholar 

  • 55.

    Eide, D. J. Metal ion transport in eukaryotic microorganisms: Insights from Saccharomyces cerevisiae. Adv. Microb. Physiol 43, 1–38 (2000).

    CAS  PubMed  Google Scholar 

  • 56.

    Avery, S. V. Metal toxicity in yeasts and the role of oxidative stress. Adv. Appl. Microbiol 49, 111–142 (2001).

    CAS  PubMed  Google Scholar 

  • 57.

    Wang, M., Hao, R. & Ding, Y. Response mechanism of electric current on adsorption and immobilization of lead by Pencillium polonicum. Acta Petrologica Et Mineralogica 36, 858–864 (2017).

    Google Scholar 

  • 58.

    Zougagh, M., Torres, A. Gd, Alonso, E. V. & Pavon, J. M. C. Automatic on line preconcentration and determination of lead in water by ICP-AES using a TS-microcolumn. Talanta. 62, 503–510 (2004).

    CAS  PubMed  Google Scholar 

  • 59.

    Fan, T. et al. Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium Simplicissimum: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 160, 655–661 (2008).

    CAS  PubMed  Google Scholar 

  • 60.

    Ding, Y., Hao, R., Xu, X., Lu, A. & Xu, H. Improving immobilization of Pb(II) ions by Aspergillus niger cooperated with photoelectron by anatase under visible light irradiation. Geomicrobiol. J. 36, 591–599 (2019).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Study: Reflecting sunlight to cool the planet will cause other global changes

    Integrative description of a new Dactylobiotus (Eutardigrada: Parachela) from Antarctica that reveals an intraspecific variation in tardigrade egg morphology