in

Structural and functional shifts of soil prokaryotic community due to Eucalyptus plantation and rotation phase

  • 1.

    Cubasch, U. et al. Introduction. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Intergovernmental Panel on Climate Change) 119–158, https://doi.org/10.1017/CBO9781107415324.007 (Cambridge University Press, 2013).

  • 2.

    Hartmann, D. L. et al. Observations: Atmosphere and Surface. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Intergovernmental Panel on Climate Change) 159–254, https://doi.org/10.1017/CBO9781107415324.008 (Cambridge University Press, 2013).

  • 3.

    Gitay, H., Suárez, A. & Watson, R. Climate Change and Biodiversity. Intergovernmental Panel on Climate Change. Geneva (2002).

  • 4.

    Myhre, G. et al. Anthropogenic and Natural Radiative Forcing. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Change, I. P. on C.) 659–740 (Cambridge University Press, 2013).

  • 5.

    Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science (80-). 326, 123–125 (2009).

    ADS  CAS  Google Scholar 

  • 6.

    IPCC. Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In press (2019).

  • 7.

    SEEG. Análise das Emissões Brasileiras de Gases de Efeito Estufa e suas implicações para as metas do Brasil – 1970–2018 (2019).

  • 8.

    Climate Watch. Washington, DC: World Resources Institute, https://www.climatewatchdata.org/ (2018).

  • 9.

    Food and Agriculture Organisation of the United Nations. Global Forest Resources Assessment 2015. How are the world’s forests changing?, http://www.fao.org/3/a-i4808e.pdf (2015).

  • 10.

    Brazilian tree industry. Annual report of IBA (indústria brasileira de árvores) (2019).

  • 11.

    Du, H. et al. Carbon Storage in a Eucalyptus Plantation Chronosequence in Southern China. Forests 6, 1763–1778 (2015).

    Google Scholar 

  • 12.

    Brancalion, P. H. S. et al. Exotic eucalypts: From demonized trees to allies of tropical forest restoration? J. Appl. Ecol. 00, 1–12 (2019).

    Google Scholar 

  • 13.

    Gonçalves, J. L. D. M. et al. Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For. Ecol. Manage. 301, 6–27 (2013).

    Google Scholar 

  • 14.

    Fest, B. J., Livesley, S. J., Drösler, M., van Gorsel, E. & Arndt, S. K. Soil-atmosphere greenhouse gas exchange in a cool, temperate Eucalyptus delegatensis forest in south-eastern Australia. Agric. For. Meteorol. 149, 393–406 (2009).

    ADS  Google Scholar 

  • 15.

    Livesley, S. J. et al. Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Glob. Chang. Biol. 15, 425–440 (2009).

    ADS  Google Scholar 

  • 16.

    Martins, C. S. C., Nazaries, L., Macdonald, C. A., Anderson, I. C. & Singh, B. K. Water availability and abundance of microbial groups are key determinants of greenhouse gas fluxes in a dryland forest ecosystem. Soil Biol. Biochem. 86, 5–16 (2015).

    CAS  Google Scholar 

  • 17.

    Zhang, K. et al. Impact of nitrogen fertilization on soil-Atmosphere greenhouse gas exchanges in eucalypt plantations with different soil characteristics in southern China. Plos one 12, e0172142 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Cuer, C. A. et al. Short-term effect of Eucalyptus plantations on soil microbial communities and soil-atmosphere methane and nitrous oxide exchange. Sci. Rep. 8, 15133 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 19.

    Dalal, R. C. & Allen, D. E. Greenhouse gas fluxes from natural ecosystems. Aust. J. Bot. 56, 369–407 (2008).

    CAS  Google Scholar 

  • 20.

    Laclau, J.-P. Nutrient Dynamics throughout the Rotation of Eucalyptus Clonal Stands in Congo. Ann. Bot. 91, 879–892 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Madsen, E. L. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. Opin. Biotechnol. 22, 456–464 (2011).

    CAS  PubMed  Google Scholar 

  • 22.

    Nazaries, L., Murrell, J. C., Millard, P., Baggs, L. & Singh, B. K. Methane, microbes and models: Fundamental understanding of the soil methane cycle for future predictions. Environ. Microbiol. 15, 2395–2417 (2013).

    CAS  PubMed  Google Scholar 

  • 23.

    Signor, D. & Cerri, C. E. P. Nitrous oxide emissions in agricultural soils: a review. Pesqui. Agropecuária Trop. 43, 322–338 (2013).

    Google Scholar 

  • 24.

    Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F. & Erasmi, S. Greenhouse gas emissions from soils — A review. Chemie der Erde – Geochemistry 76, 327–352 (2016).

    ADS  CAS  Google Scholar 

  • 25.

    Insam, H. & Wett, B. Control of GHG emission at the microbial community level. Waste Manag. 28, 699–706 (2008).

    CAS  PubMed  Google Scholar 

  • 26.

    Alves, B. J. R. et al. Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biol. Biochem. 46, 129–135 (2012).

    CAS  Google Scholar 

  • 27.

    Morais, R. F., Boddey, R. M., Urquiaga, S., Jantalia, C. P. & Alves, B. J. R. Ammonia volatilization and nitrous oxide emissions during soil preparation and N fertilization of elephant grass (Pennisetum purpureum Schum.). Soil Biol. Biochem. 64, 80–88 (2013).

    Google Scholar 

  • 28.

    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    CAS  PubMed  Google Scholar 

  • 29.

    Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12(30), 1–18 (2011).

    Google Scholar 

  • 30.

    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–6 (2013).

    CAS  PubMed  Google Scholar 

  • 32.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Cole, J. R. et al. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141–145 (2009).

    Google Scholar 

  • 34.

    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Google Scholar 

  • 35.

    Amir, A. et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. mSystems 2, 1–7 (2017).

    Google Scholar 

  • 36.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).

    Google Scholar 

  • 37.

    Dufrene, M. & Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 67, 345–366 (1997).

    Google Scholar 

  • 38.

    McCune, B. & Mefford, M. J. PC-ORD v. 6.0. MjM Software, Gleneden Beach, OR (2010).

  • 39.

    Liu, H. et al. Greenhouse gas fluxes from soils of different land-use types in a hilly area of South China. Agric. Ecosyst. Environ. 124, 125–135 (2008).

    CAS  Google Scholar 

  • 40.

    Yashiro, Y., Kadir, W. R., Okuda, T. & Koizumi, H. The effects of logging on soil greenhouse gas (CO2, CH4, N2O) flux in a tropical rain forest, Peninsular Malaysia. Agric. For. Meteorol. 148, 799–806 (2008).

    ADS  Google Scholar 

  • 41.

    Davidson, E. A. Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. in Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides and Halomethanes (eds. Rogers, J. & Whitman, W.) 219–235 (American Society of Microbiology, 1991).

  • 42.

    Weslien, P., Klemedtsson, A. K., Börjesson, G. & Klemedtsson, L. Strong pH influence on N2O and CH4 fluxes from forested organic soils. Eur. J. Soil Sci. 60, 311–320 (2009).

    CAS  Google Scholar 

  • 43.

    Kunito, T. et al. Aluminum and acidity suppress microbial activity and biomass in acidic forest soils. Soil Biol. Biochem. 97, 23–30 (2016).

    CAS  Google Scholar 

  • 44.

    Illmer, P., Marschall, K. & Schinner, F. Influence of available aluminium on soil micro-organisms. Lett. Appl. Microbiol. 21, 393–397 (1995).

    CAS  Google Scholar 

  • 45.

    Flechard, C. R., Neftel, A., Jocher, M., Ammann, C. & Fuhrer, J. Bi-directional soil/atmosphere N2O exchange over two mown grassland systems with contrasting management practices. Glob. Chang. Biol. 11, 2114–2127 (2005).

    ADS  Google Scholar 

  • 46.

    Chapuis-Lardy, L., Wrage, N., Metay, A., Chotte, J.-L. & Bernoux, M. Soils, a sink for N2O? A review. Glob. Chang. Biol. 13, 1–17 (2007).

    ADS  Google Scholar 

  • 47.

    Chalk, P. M. & Smith, C. J. The role of agroecosystems in chemical pathways of N2O production. Agric. Ecosyst. Environ. 290, 106783 (2020).

    Google Scholar 

  • 48.

    Hazlett, P. W., Gordon, A. M., Voroney, R. P. & Sibley, P. K. Impact of harvesting and logging slash on nitrogen and carbon dynamics in soils from upland spruce forests in northeastern Ontario. 39, 43–57 (2007).

  • 49.

    Liu, L. & Greaver, T. L. A review of nitrogen enrichment effects on three biogenic GHGs: The CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecol. Lett. 12, 1103–1117 (2009).

    CAS  PubMed  Google Scholar 

  • 50.

    Aronson, E. L., Allison, S. D. & Helliker, B. R. Environmental impacts on the diversity of methane-cycling microbes and their resultant function. Front. Microbiol. 4, 1–15 (2013).

    Google Scholar 

  • 51.

    Navarrete, A. A. et al. Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol. Ecol. 24, 2433–2448 (2015).

    CAS  PubMed  Google Scholar 

  • 52.

    Crowther, T. W. et al. Predicting the responsiveness of soil biodiversity to deforestation: A cross-biome study. Glob. Chang. Biol. 20, 2983–2994 (2014).

    ADS  PubMed  Google Scholar 

  • 53.

    Mendes, L. W. et al. Soil-Borne Microbiome: Linking Diversity to Function. Microb. Ecol. 70, 255–265 (2015).

    CAS  PubMed  Google Scholar 

  • 54.

    Jangid, K. et al. Soil Biology & Biochemistry Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol. Biochem. 43, 2184–2193 (2011).

    CAS  Google Scholar 

  • 55.

    Rachid, C. T. C. C. et al. Intercropped Silviculture Systems, a Key to Achieving Soil Fungal Community Management in Eucalyptus Plantations. Plos one 10, e0118515 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Pereira, A. P. D. A. et al. Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. Plos one 12, e0180371 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 57.

    Rachid, C. T. C. C. et al. Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Biol. Biochem. 66, 146–153 (2013).

    CAS  Google Scholar 

  • 58.

    Lauber, C. L., Ramirez, K. S., Aanderud, Z., Lennon, J. & Fierer, N. Temporal variability in soil microbial communities across land-use types. ISME J. 7, 1641–1650 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Paula, F. S. et al. Land use change alters functional gene diversity, composition and abundance in Amazon forest soil microbial communities. Mol. Ecol. 23, 2988–2999 (2014).

    PubMed  Google Scholar 

  • 60.

    Rachid, C. T. C. C. et al. Effect of sugarcane burning or green harvest methods on the Brazilian Cerrado soil bacterial community structure. Plos one 8, e59342 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. Environ. Microbiol. 18, 2039–2051 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Kroeger, M. E. et al. New Biological Insights Into How Deforestation in Amazonia Affects Soil Microbial Communities Using Metagenomics and Metagenome-Assembled Genomes. Front. Microbiol. 9, 1–13 (2018).

    CAS  Google Scholar 

  • 63.

    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B 281, 20141988 (2014).

    PubMed  Google Scholar 

  • 64.

    Lipson, D. A. Relationships between temperature responses and bacterial community structure along seasonal and altitudinal gradients. FEMS Microbiol. Ecol. 59, 418–427 (2007).

    CAS  PubMed  Google Scholar 

  • 65.

    Campbell, C. A. et al. Seasonal trends in soil biochemical attributes: Effects of crop management on a Black Chernozem. Can. J. Soil Sci. 79, 85–97 (1999).

    CAS  Google Scholar 

  • 66.

    Cain, M. L., Subler, S., Evans, J. P. & Fortin, M.-J. Sampling spatial and temporal variation in soil nitrogen availability. Oecologia 118, 397–404 (1999).

    ADS  PubMed  Google Scholar 

  • 67.

    Petersen, I. A. B., Meyer, K. M. & Bohannan, B. J. M. Meta-Analysis Reveals Consistent Bacterial Responses to Land Use Change Across the Tropics. Front. Ecol. Evol. 7, 1–9 (2019).

    Google Scholar 

  • 68.

    Rachid, C. T. et al. Physical-chemical and microbiological changes in Cerrado Soil under differing sugarcane harvest management systems. BMC Microbiol. 12, 170 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Wallis, P. D., Haynes, R. J., Hunter, C. H. & Morris, C. D. Effect of land use and management on soil bacterial biodiversity as measured by PCR-DGGE. Appl. Soil Ecol. 46, 147–150 (2010).

    Google Scholar 

  • 70.

    Marcondes de Souza, J. A., Carareto Alves, L. M., de Mello Varani, A. & de Macedo Lemos, E. G. The Family Bradyrhizobiaceae. In The Prokaryotes (eds. Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E. & Thompson, F.) 135–154, https://doi.org/10.1007/978-3-642-30197-1_253 (Springer Berlin Heidelberg, 2014).

    Google Scholar 

  • 71.

    Tamura, T., Ishida, Y., Nozawa, Y., Otoguro, M. & Suzuki, K.-I. Transfer of Actinomadura spadix Nonomura and Ohara 1971 to Actinoallomurus spadix gen. nov., comb. nov., and description of Actinoallomurus amamiensis sp. nov., Actinoallomurus caesius sp. nov., Actinoallomurus coprocola sp. nov., Actinoallomurus fulvus s. Int. J. Syst. Evol. Microbiol. 59, 1867–1874 (2009).

    PubMed  Google Scholar 

  • 72.

    Bælum, J. et al. Direct analysis of tfdA gene expression by indigenous bacteria in phenoxy acid amended agricultural soil. ISME J. 2, 677–687 (2008).

    PubMed  Google Scholar 

  • 73.

    Shannon, K. E. M. et al. Effect of nitrate and glucose addition on denitrification and nitric oxide reductase (cnorB) gene abundance and mRNA levels in Pseudomonas mandelii inoculated into anoxic soil. Antonie Van Leeuwenhoek 100, 183–195 (2011).

    CAS  PubMed  Google Scholar 

  • 74.

    Yoshida, M., Ishii, S., Fujii, D., Otsuka, S. & Senoo, K. Identification of Active Denitrifiers in Rice Paddy Soil by DNA- and RNA-Based Analyses. Microbes Environ. 27, 456–461 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 75.

    Morales, S. E., Cosart, T. & Holben, W. E. Bacterial gene abundances as indicators of greenhouse gas emission in soils. ISME J. 4, 799–808 (2010).

    CAS  PubMed  Google Scholar 

  • 76.

    Lee, K. & Jose, S. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. For. Ecol. Manage. 185, 263–273 (2003).

    Google Scholar 

  • 77.

    Fisk, M. C. & Fahey, T. J. Microbial biomass and nitrogen cycling responses to fertilization and litter removal in young northern hardwood forests. Biogeochemistry 53, 201–223 (2001).

    CAS  Google Scholar 

  • 78.

    Meyer, K. M. et al. Conversion of Amazon rainforest to agriculture alters community traits of methane-cycling organisms. Mol. Ecol. 26, 1547–1556 (2017).

    CAS  PubMed  Google Scholar 

  • 79.

    Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531 (2012).

    CAS  PubMed  Google Scholar 

  • 80.

    Kerou, M. & Schleper, C. Nitrososphaera. in Bergey’s Manual of Systematics of Archaea and Bacteria 1–10 https://doi.org/10.1002/9781118960608.gbm01294 (John Wiley & Sons, Ltd. 2016).

  • 81.

    Zhalnina, K. et al. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front. Microbiol. 4, 1–13 (2013).

    Google Scholar 

  • 82.

    Yu, Y. et al. Effect of land use on the denitrification, abundance of denitrifiers, and total nitrogen gas production in the subtropical region of China. Biol. Fertil. Soils 50, 105–113 (2014).

    CAS  Google Scholar 

  • 83.

    Ducey, T. F. et al. Soil Physicochemical Conditions, Denitrification Rates, and Abundance in North Carolina Coastal Plain Restored Wetlands. J. Environ. Qual. 44, 1011 (2015).

    CAS  PubMed  Google Scholar 

  • 84.

    Lammel, D. R., Nüsslein, K., Tsai, S. M. & Cerri, C. C. Land use, soil and litter chemistry drive bacterial community structures in samples of the rainforest and Cerrado (Brazilian Savannah) biomes in Southern Amazonia. Eur. J. Soil Biol. 66, 32–39 (2015).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Study: Reflecting sunlight to cool the planet will cause other global changes

    Integrative description of a new Dactylobiotus (Eutardigrada: Parachela) from Antarctica that reveals an intraspecific variation in tardigrade egg morphology