in

Experimental and archaeological data for the identification of projectile impact marks on small-sized mammals

  • 1.

    Blasco, R. et al. Environmental availability, behavioural diversity and diet: A zooarchaeological approach from the TD10-1 sublevel of Gran Dolina (Sierra de Atapuerca, Burgos, Spain) and Bolomor Cave (Valencia, Spain). Quaternary Science Reviews 70, 124–144 (2013).

    ADS  Google Scholar 

  • 2.

    Brown, K., Fa, D.A., Finlayson, G. & Finlayson, C. Small game and marine resource exploitation by Neanderthals: the evidence from Gibraltar. In Trekking the Shore: Changing Coastlines and the Antiquity of Coastal Settlement, Interdisciplinary Contributions to Archaeology (eds. Bicho, N.F., Haws, J.A., Davis, L.) 247-272 (Springer (2011).

  • 3.

    Cochard, D., Brugal, J.-P., Morin, E. & Meignen, L. Evidence of small fast game exploitation in the Middle Paleolithic of Les Canalettes Aveyron, France. Quaternary International 264, 32–51 (2012).

    ADS  Google Scholar 

  • 4.

    Gómez-Olivencia, A. et al. First data of Neandertal bird and carnivore exploitation in the Cantabrian region (Axlor; Barandiaran excavations; Dima, Biscay, northern Iberian peninsula). Scientific Reports 8, 10551 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Hardy, B. L. et al. Impossible Neanderthals? Making string, throwing projectiles and catching small game during marine Isotope stage 4 (abri du Maras, France). Quaternary Science Reviews 82, 23–40 (2013).

    ADS  Google Scholar 

  • 6.

    Morin, E. et al. New evidence of broader diets for archaic Homo populations in the northwestern Mediterranean. Science Advances 5 (2019).

  • 7.

    Pelletier, M., Desclaux, E., Brugal, J.-P. & Texier, P.-J. The exploitation of rabbits for food and pelts by last interglacial Neandertals. Quaternary Science Reviews 224, 05972, https://doi.org/10.1016/j.quascirev.2019.105972 (2019).

    Article  Google Scholar 

  • 8.

    Romandini, M. et al. Late neandertals and the exploitation of small mammals in northern Italy: fortuity, necessity or hunting variability? Quaternaire 29(1), 61–67 (2018).

    Google Scholar 

  • 9.

    Stiner, M. C. Prey choice, site occupation intensity and economic diversity across the Middle to early Upper Palaeolithic at Üçağızlı Caves I and II (Hatay, Turkey). Before Farming 3, 1–20 (2009).

    Google Scholar 

  • 10.

    Wedage, O. et al. Specialized rainforest hunting by Homo sapiens ~45,000 years ago. Nature Communications 10(739), 1–8, https://doi.org/10.1038/s41467-019-08623-1 (2019).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Flannery, K.V. Origins and ecological effects of early domestication in Iran and the Near East. In The Domestication and Exploitation of Plants and Animals (eds. Ucko, P.J., Dimbleby, G.W.), 73-100 (Gerald Duckworth (1969).

  • 12.

    Stiner, M. C., Munro, N. D., Surowell, T. A., Tchernov, E. & Bar-Yosef, O. Paleolithic population growth pulses evidenced by small animal exploitation. Science 283, 190–194 (1999).

    CAS  PubMed  Google Scholar 

  • 13.

    Stiner, M. C., Munro, N. D. & Surovell, T. A. The tortoise and the hare. Small game use, the broad-spectrum revolution, and Paleolithic demography. Current Anthropology 41, 39–73 (2000).

    CAS  PubMed  Google Scholar 

  • 14.

    Aura, J. E., Villaverde, V., Pérez-Ripoll, M., Martínez, R. & Calatayud, P. G. Big game and small prey: Paleolithic and epipaleolithic economy from Valencia (Spain). Journal of Archaeological Method and Theory 9, 215–267 (2002).

    Google Scholar 

  • 15.

    Boschin, F. Exploitation of carnivores, lagomorphs and rodents at Grotta Paglicci during the Epigravettian: The dawn of a new subsistence strategy? Journal of Archaeological Science 26, 1–21, https://doi.org/10.1016/j.jasrep.2019.101871 (2019).

    ADS  Article  Google Scholar 

  • 16.

    Costamagno, S. et al. New environment, new games, new hunters? Evolution of the cynegetic practices in larouPyrenees from the Late Glacial to the beginning of the Post Glacial. Bulletin de la Société Préhistorique Française 105(1), 17–27 (2008).

    Google Scholar 

  • 17.

    Fontana, L. & Brochier, J. E. Diversification ou stabilité de la prédation au cours du Tardiglaciaire dans les Pyrénées françaises: et si on analysait les données? Bulletin de la Société Préhistorique Française 106(3), 477–490 (2009).

    Google Scholar 

  • 18.

    Hockett, B. S. & Bicho, N. F. The rabbits of Picareiro Cave: Small mammal hunting during the late Upper Palaeolithic in the Portuguese Estremadura. Journal of Archaeological Science 27, 715–723 (2000).

    Google Scholar 

  • 19.

    Laroulandie, V. Hunting fast-moving, low-turnover small game: The status of the snowy owl (Bubo scandiacus) in the Magdalenian. Quaternary International 414, 174–197 (2016).

    ADS  Google Scholar 

  • 20.

    Mallye, J.-B. & Laroulandie, V. L’utilisation des petits gibiers au Tardiglaciaire: le cas de Rochereil (collection Jude, Dordogne). In Animal symbolisé, animal exploité: du Paléolithique à la Protohistoire (eds. Costamagno, S., Gourichon, L., Dupont, C., Dutour, O. & Vialou, D.), 1-21 (Édition électronique du CTHS (2018).

  • 21.

    Monin, G., Griggo, C. & Tomè, C. Stratégies d’exploitation d’un écosystème alpin au Tardiglaciaire. Les chasseurs de marmottes du Vercors. In Actes de la table ronde de Pierrefort (eds. Miras, Y., Surmely, F.), 29-50 (Presses Universitaires de Franche-Comtè (2006).

  • 22.

    Rillardon, M. & Brugal, J.-P. What about the Broad Spectrum Revolution? Subsistence strategy of hunter-gatherers in Southeast France between 20 and 8 ka BP. Quaternary International 337, 129–153 (2014).

    ADS  Google Scholar 

  • 23.

    Rosado-Méndez, N. Y., Lloveras, L., García-Argüelles, P. & Nadal, J. The role of small prey in hunter–gatherer subsistence strategies from the Late Pleistocene–Early Holocene transition site in NE Iberia: the leporid accumulation from the Epipalaeolithic level of Balma del Gai site. Archaeological and Anthropological Sciences 11(6), 2507–2525, https://doi.org/10.1007/s12520-018-0695-6 (2019).

    Article  Google Scholar 

  • 24.

    Rufá, A. & Vaquero, M. Making different things, but eating the same food? Correlation between cultural and subsistence changes during the Pleistocene-Holocene boundary in the northeastern Iberian Peninsula. Quaternary Science Reviews 184, 114–131 (2018).

    ADS  Google Scholar 

  • 25.

    Starkovich, B. M. Intensification of small game resources at Klissoura Cave 1 (Peloponnese, Greece) from the Middle Paleolithic to Mesolithic. Quaternary International 264, 17–31 (2012).

    ADS  Google Scholar 

  • 26.

    Stiner, M. C. & Munro, N. D. Approaches to Prehistoric diet breadth. demography, and prey ranking systems in time and space. Journal of Archaeological Method and Theory 9, 181–214 (2002).

    Google Scholar 

  • 27.

    Stiner, M. C. & Munro, N. D. On the evolution of diet and landscape during the Upper Paleolithic through Mesolithic at Franchthi Cave (Peloponnese, Greece). Journal of Human Evolution 60, 618–636 (2011).

    PubMed  Google Scholar 

  • 28.

    Stutz, A. J., Munro, N. D. & Bar-Oz, G. Increasing the resolution of the Broad Spectrum Revolution in the Southern Levantine Epipaleolithic (19–12 ka). Journal of Human Evolution 56, 294–306 (2009).

    ADS  PubMed  Google Scholar 

  • 29.

    Yravedra, J. et al. Lagomorph exploitation during the Upper Palaeolithic in the Northern Iberian Peninsula. New evidence from Coímbre Cave (Asturias, Spain). Quaternary International 506, 59–68 (2019).

    ADS  Google Scholar 

  • 30.

    Stephens, D.W. & Krebs, J.R. Foraging Theory. In Monographs in Behavior and Ecology (Princeton University Press (1986).

  • 31.

    Pianka, E.R. Evolutionary Ecology. (Addison Wesley Education Publishers (2000).

  • 32.

    Broughton, J. M. Declines in mammalian foraging efficiency during the Late Holocene, San Francisco Bay, California. Journal of Anthropological Archaeology 13, 371–401 (1994).

    Google Scholar 

  • 33.

    Bettinger, R.L. Hunter-gatherers: Archaeological and Evolutionary Theory. (Plenum Press (1991).

  • 34.

    Lupo, K. D. & Schmitt, D. N. Upper Paleolithic net-hunting, small prey exploitation and women’s work effort: a view from the ethnographic and ethnoarchaeological record of the Congo Basin. Journal of Archaeological Method and Theory 9, 147–179 (2002).

    Google Scholar 

  • 35.

    Lupo, K. D. & Schmitt, D. N. Small prey hunting technology and zooarchaeological measures of taxonomic diversity and abundance: Ethnoarchaeological evidence from Central African forest foragers. Journal of Anthropological Archaeology 24, 335–353 (2005).

    Google Scholar 

  • 36.

    Ugan, A. Does size matter? Body size, mass collecting, and their implications for understanding prehistoric foraging behavior. American Antiquity 70, 75–89 (2005).

    Google Scholar 

  • 37.

    Grayson, D.K. & Cannon, M.D. Human paleoecology and foraging theory in the Great Basin. In Models for the Millennium: Great Basin Anthropology Today (ed. Beck, C.), 141-150 (University of Utah Press (1999).

  • 38.

    Jones, E. Dietary evenness, prey choice, and human–environment interactions. Journal of Archaeological Science 31, 307–317 (2004).

    ADS  Google Scholar 

  • 39.

    Jones, E. Prey choice, mass collecting, and the wild European rabbit (Oryctolagus cuniculus). Journal of Anthropological Archaeology 25, 275–289 (2006).

    Google Scholar 

  • 40.

    Madsen, D. B. & Schmitt, D. N. Mass collecting and the diet breadth model: a Great Basin example. Journal of Archaeological Science 25, 445–455 (1998).

    Google Scholar 

  • 41.

    Andrés, M., Gidna, A. O., Yravedra, J. & Domínguez-Rodrigo, M. A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnivores. J. Archaeo. Anthrop. Sci. 4(3), 209–219 (2012).

    Google Scholar 

  • 42.

    Binford, L.R. Bones, Ancient Men and Modern Myths. (Academic Press: New York (1981).

  • 43.

    Blumenschine, R. J. & Selvaggio, M. M. Percussion marks on bone surfaces as a new diagnostic of hominid behavior. Nature 333, 763–765 (1988).

    ADS  Google Scholar 

  • 44.

    Capaldo, S. D. & Blumenschine, R. J. A quantitative diagnosis of notches made by hammerstone percussion and carnivore gnawing on bovid long bones. American Antiquity 59, 724–748 (1994).

    Google Scholar 

  • 45.

    Domínguez-Rodrigo, M. & Barba, R. New estimates of tooth mark and percussion mark frequencies at the FLK site: The carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution 50, 170–194 (2006).

    PubMed  Google Scholar 

  • 46.

    Domínguez-Rodrigo, M., de Juana, S., Galán, A. B. & Rodríguez, M. A new protocol to differentiate trampling marks from butchery cut marks. Journal of Archaeological Science 36, 2643–2654 (2009).

    Google Scholar 

  • 47.

    Fernandez-Jalvo, Y. & Andrews, P. Atlas of taphonomic identifications. 1001 + images of fossil and recent mammal bone modification. (Vertebrate Paleobiology and Paleoanthropology Series, Springer: Berlin (2016).

  • 48.

    Fisher, W. J. Bone surface modifications in zooarchaeology. Journal of Archaeological Method and Theory 2, 7–68 (1995).

    Google Scholar 

  • 49.

    Grayson, D. K. Quantitative Zooarchaeology. Topics in the Analysis of Archaeological Faunas. (Academic Press) 202 p. (1984).

  • 50.

    Lyman, R. L. Vertebrate Taphonomy. (Cambridge University Press: Cambridge (1994).

  • 51.

    Outram, A.K. Bone fracture and within-bone nutrients: an experimentally based method for investigating levels of marrow extraction. In Consuming Passions and Patterns of Consumption (eds. Miracle, P. & Milner, N.), 51-64 (McDonald Institute for Archaeological Research: Cambridge (2002).

  • 52.

    Pickering, T. R. & Egeland, C. P. Experimental patterns of hammerstone percussion damage on bones: Implications for inferences of carcass processing by humans. Journal of Archaeological Science 33, 459–469 (2006).

    Google Scholar 

  • 53.

    Potts, R. & Shipman, P. Cutmarks made by stone tools on bones from Olduvai Gorge, Tanzania. Nature 291, 577–580 (1981).

    ADS  Google Scholar 

  • 54.

    Selvaggio, M. M. & Wilder, J. Identifying the involvement of multiple carnivore taxa with archaeological bone assemblages. Journal of Archaeological Science 28, 465–470 (2001).

    Google Scholar 

  • 55.

    Shipman, P. Life History a Fossil. An Introduction to Taphonomy and Paleoecology. (Harvard University Press: Harvard (1981).

  • 56.

    Shipman, P. & Rose, J. Cutmark mimics on modern fossil bovid bones. Current Anthropology 25, 116–177 (1984).

    Google Scholar 

  • 57.

    Villa, P. & Mahieu, È. Breakage patterns of human long bones. Journal of Human Evolution 21, 27–48 (1991).

    Google Scholar 

  • 58.

    O’Driscoll, C. A. & Thompson, J. C. Experimental projectile impact marks on bone: implication for identifying the origins of projectile technology. Journal of Archaeological Science 49, 398–413 (2014).

    Google Scholar 

  • 59.

    O’Driscoll, C. A. & Thompson, J. C. The origins and early elaboration of projectile technology. Evolutionary Anthropology 27, 30–45 (2018).

    PubMed  Google Scholar 

  • 60.

    Bachechi, L., Fabbri, P.-F. & Mallegni, F. An arrow-caused lesion in a Late Upper Palaeolithic human pelvis. Current Anthropology 38(Number I), 135–140 (1997).

    Google Scholar 

  • 61.

    Bergman, C.A., Roberts, M.B. & Wilhelmsen, K.H. Archaeology of excavated areas. In Boxgrove: a Middle Pleistocene Hominid Site at Eartham Quarry (eds. Roberts, M.B. & Parfitt, S.A.), 312–378 (English Heritage: London (1999).

  • 62.

    Boëda, E., Geneste, J. M. & Griggo, C. A. Levallois point embedded in the vertebra of a wild ass (Equus africanus): hafting, projectiles and Mousterian hunting weapons. Antiquity 73, 394–402 (1999).

    Google Scholar 

  • 63.

    Bratlund, B. A study of hunting lesions containing flint fragments on reindeer bones at Stellmoor, Schleswig-Holstein, Germany. In The Late Glacial in North-west Europe (eds. Barton, N., Roberts, A.J. & Roe, D.A.), 193-207 (CBA Research Report 77 (1991).

  • 64.

    Bratlund, B. Hunting strategies in the Late Glacial of northern. Europe: a survey of the faunal evidence. Journal of World Prehistory 10, 1–48 (1996).

    Google Scholar 

  • 65.

    Churchill, S. E., Franciscus, R. G., McKean-Peraza, H. A., Daniel, J. A. & Warren, B. R. Shanidar 3 Neandertal rib puncture wound and Paleolithic weaponry. Journal of Human Evolution 57, 163–178 (2009).

    PubMed  Google Scholar 

  • 66.

    Fernàndez-Crespo, T. An Arrowhead Injury in a Late Neolithic/Early Chalcolithic Human Cuneiform from the Rockshelter of La Peña de Marañón (Navarre, Spain). International Journal of Osteoarchaeology 26, 1024–1033 (2016).

    Google Scholar 

  • 67.

    Fernàndez-Crespo, T. New Evidence of Early Chalcolithic Interpersonal Violence in the Middle Ebro Valley (Spain): Two Arrowhead Injuries from the Swallet of Las Yurdinas II. International Journal of Osteoarchaeology 27, 76–85 (2017).

    Google Scholar 

  • 68.

    Fischer, A. Hunting with flint-tipped arrows: results and experiences from practical experiments. In The Mesolithic in Europe. Colloque UISPP Edinburgh 1985 (ed. Bonsall, C.) (John Donald Publishers Ltd. Edinburgh (1985).

  • 69.

    Gaudzinski-Windheuser, S. Hunting lesions in Pleistocene and Early Holocene European bone assemblages and their implications for our knowledge on the use and timing of lithic projectile technology. In Multidisciplinary approaches to the study of Stone Age Weaponry (eds. Iovita, R, & Sano, K.), 77-100 (Springer Science+Business Media: Dordrech (2016).

  • 70.

    Leduc, C. New Mesolithic hunting evidence from bone injuries at Danish Maglemosian sites: Lund by Mose and Mullerup (Sjælland). International Journal Osteoarchaeology 22, 1–16 (2012).

    Google Scholar 

  • 71.

    Milo, R. Evidence for hominid predation at Klasies River Mouth, South Africa, and its implications for the behaviour of early modern humans. Journal of Archaeological Science 25, 99–133 (1998).

    Google Scholar 

  • 72.

    Morel, P. La grotte du Bichon (La Chaux-de-Fonds, canton de Neuchâtel, Suisse): un site archéologique singulier, ou lʼhistoire dʼune chasse à lʼours brun il y a 12 ans dans le Jura suisse. In Les derniers chasseurs-cueilleurs du Massif jurassien et de ses marges (eds. Cupillard, C. & Richard, A.), 88-93 (Centre jurassien du Patrimoine: Lons-le-Saunier (1998).

  • 73.

    Münzel, S. C. & Conard, N. J. Cave bear hunting in the Hohle Fels, a cave site in the Ach valley, Swabian Jura. Revue de Paléobiologie 23, 877–885 (2004).

    Google Scholar 

  • 74.

    Nikolskiy, P. & Pitulko, V. Evidence from the Yana Paleolithic site, Artic Siberia, yields clues to the riddle of mammoth hunting. Journal of Archaeological Science 40, 4189–4197 (2013).

    Google Scholar 

  • 75.

    Noe-Nygaard, N. Mesolithic hunting in Denmark illustrated by bone injuries caused by human weapons. Journal of Archaeological Science 1, 217–248 (1974).

    Google Scholar 

  • 76.

    Pitulko, V. et al. Early human presence in the Arctic. Evidence from 45,000-year-old mammoth remains. Science 351(6270), 260–263 (2016).

    ADS  CAS  PubMed  Google Scholar 

  • 77.

    Pöllath, N. et al. Almost a chest hit: An aurochs humerus with hunting lesion from Göbekli Tepe, south- eastern Turkey, and its implications. Quaternary International 495, 30–48 (2018).

    ADS  Google Scholar 

  • 78.

    Waters, M. R. et al. Pre-Clovis Mastodon Hunting 13,800 Years Ago at the Manis Site, Washington. Science 334, 251–253 (2011).

    Google Scholar 

  • 79.

    Wojtal, P. et al. The earliest direct evidence of mammoth hunting in Central Europe – The Kraków Spadzista site (Poland). Quaternary Science Reviews 213, 162–166 (2019).

    ADS  Google Scholar 

  • 80.

    Badenhorst, S. Cause and effect: the impact of animal variables on experimentally produced bone lesions. In Bones for tools – tools for bones: the interplay between objects and objectives (eds. Seetah, K. & Gravina, B.), 65-71 (McDonald Institute of Archaeology Monographs: Cambridge (2012).

  • 81.

    Castel, J.-C. Identification des impacts de projectiles sur le squelette des grands ongulés. Annales de Paléontologie 94, 103–118 (2008).

    Google Scholar 

  • 82.

    Letourneux, C. & Pétillon, J.-M. Hunting lesions caused by osseous projectile points: experimental results and archaeological implications. Journal of Archaeological Science 35, 2849–2862 (2008).

    Google Scholar 

  • 83.

    Pétillon, J.-M. & Letourneux, C. Au retour de la chasse. Observations expérimentales concernant les impacts sur le gibier, la récupération et la maintenance des projectiles dans le Magdalénien supérieur d’Isturitz. Préhistoire Anthropologie Méditerranéenne 12, 173–188 (2003).

    Google Scholar 

  • 84.

    Petillon, J.-M. & Letourneux, C. Traces d’impacts de projectiles sur le gibier: resultats comparés des tirs experimentaux à l’arc et au propulseur effectués au Cedarc (Treignes, Belgique) en 2003 et 2004. Annales de Paléontologie 94, 209–225 (2008).

    Google Scholar 

  • 85.

    Pétillon, J.-M. et al. Hard core and cutting edge: experimental manufacture and use of Magdalenian composite projectile tip. Journal of Archaeological Science 38, 1266–1283 (2011).

    Google Scholar 

  • 86.

    Smith, M. J., Brickley, M. B. & Leach, S. L. Experimental evidence for lithic projectile injuries: improving identification of an under-recognized phenomenon. Journal of Archaeological Science 34, 540–553 (2007).

    Google Scholar 

  • 87.

    Wood, J. & Fitzhugh, B. Wound ballistics: The prey specific implications of penetrating trauma injuries from osseous, flaked stone, and composite inset microblade projectiles during the Pleistocene/Holocene transition, Alaska USA. Journal of Archaeological Science 91, 104–117 (2018).

    Google Scholar 

  • 88.

    Yeshurun, R. & Yaroshevich, A. Bone projectile injuries and Epipaleolithic hunting: new experimental and archaeological results. Journal of Archaeological Science 44, 61–68 (2014).

    Google Scholar 

  • 89.

    Aramendi, J. et al. Discerning carnivore agency through the three-dimensional study of tooth pits: revisiting crocodile feeding leistoc at FLK-Zinj and FLK NN3 (Olduvai Gorge, Tanzania). Palaeogeogr. Palaeoclimatol. Palaeoecol. 488, 93–102 (2017).

    Google Scholar 

  • 90.

    Bello, S. M. & Galway-Witham, J. Bone taphonomy inside and out: Application of 3-dimensional microscopy, scanning electron microscopy and micro-computed tomography to the study of humanly modified faunal assemblages. Quaternary International 517, 16–32 (2019).

    ADS  Google Scholar 

  • 91.

    Boschin, F. & Crezzini, J. Morphometrical analysis on cut marks using a 3D digital microscope. International Journal of Osteoarchaeology 22, 549–562 (2012).

    Google Scholar 

  • 92.

    Courtenay, L. A., Yravedra, J., Mate-González, M. A., Aramendi, J. & González-Aguilera, D. 3D analysis of cut marks using a new geometric morphometric methodological approach. Archaeological and Anthropological Sciences 11(2), 651–665 (2019a).

    Google Scholar 

  • 93.

    Courtenay, L. A. et al. New taphonomic advances in 3D digital microscopy: a morphological characterisation of trampling marks. Quaternary International 517, 55–66 (2019b).

    ADS  Google Scholar 

  • 94.

    Courtenay, L. A. et al. Combining machine learning algorithms and geometric morphometrics: a study of carnivore tooth marks. Palaeogeogr. Palaeoclimatol. Palaeoecol. 522, 28–29 (2019c).

    Google Scholar 

  • 95.

    Courtenay, L. A., Huguet, R., González-Aguilera, D. & Yravedra, J. A hybrid geometric morphometric deep learning approach for cut and trampling mark classification. Applied Sciences 10(150), 1–16 (2020).

    Google Scholar 

  • 96.

    Domínguez-Rodrigo, M. & Baquedano, E. Distinguishing butchery cut marks from crocodile bite marks through machine learning methods. Scientific Reports 8, 5786 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 97.

    Maté-González, M. A. et al. Micro-photogrammetric characterization of cut marks on bones. Journal of Archaeological Science 62, 128–142 (2015).

    Google Scholar 

  • 98.

    Maté-González, M. A., Aramendi, J., González-Aguilera, D. & Yravedra, J. Statistical comparison between low-cost methods for 3D characterization of cut-marks on bones. Remote Sensing 9, 873 (2017).

    ADS  Google Scholar 

  • 99.

    Maté-González, M. A., González-Aguilera, D., Linares-Matás, G. & Yravedra, J. New technologies applied to modelling taphonomic alterations. Quaternary International 517, 4–15 (2019).

    ADS  Google Scholar 

  • 100.

    Otárola-Castillo, E. et al. Differentiating between cutting actions on bone using 3D geometric morphometrics and Bayesian analyses with implications to human evolution. Journal of Archaeological Science 89, 56–67 (2018).

    Google Scholar 

  • 101.

    Pante, M. C. et al. A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record. Journal of Human Evolution 102, 1–11 (2017).

    ADS  PubMed  Google Scholar 

  • 102.

    Wallduck, R. & Bello, S. M. Cut mark micro-morphometrics associated with the stage of carcass decay: A pilot study using three-dimensional microscopy. Journal of Archaeological Science 18, 174–185 (2018).

    Google Scholar 

  • 103.

    Yravedra, J. et al. A new approach to raw material use in the exploitation of animal carcasses at BK (Upper Bed II, Olduvai Gorge, Tanzania): a microphotogrammetric and geometric morphometric analysis of fossil cut marks. Boreas 46(4), 860–873 (2017a).

    Google Scholar 

  • 104.

    Yravedra, J. et al. The use of micro-photogrammetry and geometric morphometrics for identifying carnivore agency in bone assemblage. Journal of Archaeological Science: Reports 14, 106–115 (2017b).

    Google Scholar 

  • 105.

    Yravedra, J., Aramendi, J., Maté-González, M. A., Courtenay, L. A. & González-Aguilera, D. Differentiating percussion pits and carnivore tooth pits using 3D reconstructions and geometric. PLoS ONE 13(3), e0194324, https://doi.org/10.1371/journal.pone.0194324 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 106.

    Yravedra, J., Maté-González, M. Á., Courtenay, L. A., González-Aguilera, D. & Fernández, M. The use of canid tooth marks on bone for the identification of livestock predation. Scientific Reports 9, 16301 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 107.

    Duches, R. et al. Identification of Late Epigravettian hunting injuries: Descriptive and 3D analysis of experimental projectile impact marks on bone. Journal of Archaeological Science 66, 88–102 (2016).

    Google Scholar 

  • 108.

    Duches, R. et al. Archaeological bone injuries by lithic backed projectiles: new evidence on bear hunting from the Late Epigravettian site of Cornafessa rock shelter (Italy). Archaeological and Anthropological Science 11(5), 2249–2270, https://doi.org/10.1007/s12520-018-0674-y (2019).

    Article  Google Scholar 

  • 109.

    Coppe, J. & Rots, V. Focus on the target. The importance of a transparent fracture terminology for understanding projectile points and projecting modes. Journal of Archaeological Science: Reports 12, 109–123 (2017).

    Google Scholar 

  • 110.

    Dockall, J. E. Wear traces and projectile impact: a review of the experimental and archaeological evidence. Journal of Field Archaeology 24(3), 321–331 (1997).

    Google Scholar 

  • 111.

    Fischer, A., Vemming Hansen, P. & Rasmussen, P. Macro and microwear traces on lithic projectile points. Experimental results and prehistoric examples. Journal of Danish Archaeology 3, 19–46 (1984).

    Google Scholar 

  • 112.

    Lazuén, T. Please do not shoot the pianist. Criteria for recognizing ancient lithic weapon use. Journal of Archaeological Science 46, 1–5 (2014).

    Google Scholar 

  • 113.

    Lombard, M. Evidence of hunting and hafting during the Middle Stone Age at Sibudu Cave, KwaZulu-Natal, South Africa: a multi analytical approach. Journal of Human Evolution 48, 279–300 (2005).

    PubMed  Google Scholar 

  • 114.

    Lombard, M. Quartz-tipped arrows older than 60 ka: further use-trace evidence from Sibudu, KwaZulu-Natal, South Africa. Journal of Archaeological Science 38(8), 1918–1930 (2011).

    Google Scholar 

  • 115.

    Lombard, M. & Pargeter, J. Hunting with Howiesons Poort segments: pilot experimental study and the functional interpretation of archaeological tools. Journal of Archaeological Science 35, 2523–2531 (2008).

    Google Scholar 

  • 116.

    Rots, V. & Plisson, H. Projectiles and the abuse of the use-wear method in a search for impact. Journal of Archaeological Science 48, 154–165 (2014).

    Google Scholar 

  • 117.

    Schoville, B. & Brown, K. S. Comparing lithic assemblage edge damage distributions: examples from the late Pleistocene and preliminary experimental results. Explorations in Anthropology 10, 34–49 (2010).

    Google Scholar 

  • 118.

    Gurioli, F., Bartolomei, G., Nannini, N., Peresani, M. & Romandini, M. Deux clavicules de marmotte epigravettiennes incisées, provenant des Grottes Verdi de Pradis (Alpes Italiennes). Paléo 22, 311–318 (2011).

    Google Scholar 

  • 119.

    Peresani, M., Duches, R., Miolo, R., Romandini, M. & Ziggiotti, S. Small Specialized Hunting Sites and their Role in Epigravettian Subsistence Strategies. A Case Study in Northern Italy. In Hunting Camps in Prehistory. Current Archaeological Approaches (eds. Bon, F., Costamagno, S. & Valdeyron, N.). P@lethnology 3, 251-266 (2011).

  • 120.

    Romandini, M., Peresani, M., Gurioli, F. & Sala, B. Marmota marmota, the most common prey species at Grotta del Clusantin: Insights from an unusual case-study in the Italian Alps. Quaternary International 252, 184–194 (2012).

    ADS  Google Scholar 

  • 121.

    Tomé, C. & Chaix, L. La chasse et l’exploitation des marmottes dans les Alpes occidentales et le Jura du sud de la fin du Pléistocène à l’Holocène. In Strategies adaptatives et diversité chez les marmottes (eds. Ramousse, R., Allainé, D. & Le Berre, M.), International Network on Marmots, Lyon, 77-84 (2003).

  • 122.

    Nannini, N. Tra archeozoologia, paleobalistica e antropologia. Lettura degli impatti delle armi da getto epigravettiane su resti faunistici nel Tardoglaciale dell’Italia nord-orientale (Phd thesis: University of Ferrara (2018).

  • 123.

    Andrews, P. Owls, caves and fossils: Predation and accumulation of small Mammals Bones in Caves, whit an Analysis of the Pleistocene Cave Faunas From Weatbury-Sub-Mendip, Somerset London, (University of Chicago Press (1990).

  • 124.

    Maté-González, M. Á. et al. Application of geometric morphometrics to the analysis of cut mark morphology on different bones of differently sized animals. Does size really matter? Quaternary International 517, 33–45 (2019).

    ADS  Google Scholar 

  • 125.

    Bean, L.J. Mukat’s People. The Cahuilla Indians of Southern California (University of California Press: London (1974).

  • 126.

    Callou, C. De la garenne au clapier: étude archéozoologique du lapin en Europe occidentale. (Mémoires du Museum national d’Histoire naturelle, Publications scientifiques du Museum: Paris, 2003).

  • 127.

    Nelson, R.K. Hunters of the Northern Forest: Designs for Survival Among Alaskan Kutchin. (University of Chicago Press: Chicago (1973).

  • 128.

    Oswalt, W.H. An Anthropological Analysis of Food-Getting Technology (Wiley: New-York (1976).

  • 129.

    Churchill, S.E. Weapon technology, prey size selection and hunting methods in modern hunter-gatherers: implications for hunting in the Palaeolithic and Mesolithic. In Hunting and animal exploitation in the Later Palaeolithic and Mesolithic of Eurasia (eds. Peterkin, G.L., Bricker, H.M. & Mellars, E.), 11-24 (Archaeological Papers of the American Anthropological Association: Washington D.C. (1993)

  • 130.

    Ellis, C.J. Factors influencing the use of stone projectile tips in Projectile Technology (ed. Knecht, H.), 37-75 (Plenum Press: New York (1997).

    Google Scholar 

  • 131.

    Caspar, J. P. & De Bie, M. Preparing for the hunt in the Late Paleolithic camp at Rekem, Belgium. Journal of Field Archaeology 23, 437–460 (1996).

    Google Scholar 

  • 132.

    Cattelain, P. Hunting during the Upper Paleolithic: bow, spearthrower, or both in Projectile Technology (ed. Knecht, H.), 213-240 (Plenum Press: New York (1997).

    Google Scholar 

  • 133.

    Duches, R., Peresani, M. & Pasetti, P. Success of a flexible behavior. Considerations on the manufacture of Late Epigravettian lithic projectile implements according to experimental tests. Archaeological and Anthropological Science 10(7), 1617–1643, https://doi.org/10.1007/s12520-017-0473-x (2018).

    Article  Google Scholar 

  • 134.

    Pelegrin, J. Les techniques de débitage laminaire au Tardiglaciaire: critères de diagnose et quelques réflexions. In L’Europe centrale et septentrionale au Tardiglaciaire (eds. Valentin, B., Bodu, P. & Christensen, M.). Mémoires du Musée de Prèhistoire d’Ile-de-France 7, 73-86 (2000).

  • 135.

    Plisson, H. Examen tracéologique des pointes aziliennes du Bois-Ragot. In La grotte du Bois-Ragot à Gouex (Vienne). Magdalénien et Azilien. Essais sur les hommes et leur environnement (eds Chollet, A. & Dujardin, V.). Mémoire de la Société Préhistorique Française XXXVIII, 183-189 (2005).

  • 136.

    Serwatka, K. What’s your point? Flexible projectile weapon system in the Central European Final Palaeolithic. The case of Swiderian points. Journal of Archaeological Science: Reports 17, 263–278 (2018).

    Google Scholar 

  • 137.

    Valentin, B. Jalons pour une paléohistoire des derniers chasseurs (XIVe-VIe millénaire avant J.-C.). (Publications de la Sorbonne, Cahiers Archéologiques de Paris 1: Paris (2008).

  • 138.

    Agogué, O. & Dalmeri, G. Lamelles à dos tronquées et pointes à dos: deux modèles d’armatures dans l’Epigravettien récent du Riparo Dalmeri (Grigno, Trentin, Italie). Preistoria Alpina 41, 231–243 (2005).

    Google Scholar 

  • 139.

    Ziggiotti, S. Strategie di caccia degli ultimi epigravettiani. Lo studio funzionale delle armature litiche di Riparo La Cogola, livello 19. Preistoria Alpina 43, 13–24 (2008).

    Google Scholar 

  • 140.

    Couturier, M. Le gibier des montagnes françaieses. (Arthaud (1964).

  • 141.

    Vescovi, E. et al. Interactions between climate and vegetation on the southern side of the Alps and adjacent areas during the Late-Glacial period as recorded by lake and mire sediment archives. Quaternary Science Reviews 26, 1650–1669 (2007).

    ADS  Google Scholar 

  • 142.

    Naudinot, N., Tomasso, A., Tozzi, C. & Peresani, M. Changes in mobility patterns as a factor of 14C date density variation in the Late Epigravettian of Northern Italy and Southeastern France. Journal of Archaeological Science 52, 578–590 (2014).

    Google Scholar 

  • 143.

    Ravazzi, C., Peresani, M., Pini, R. & Vescovi, E. Il Tardoglaciale nelle Alpi e in Pianura Padana: evoluzione stratigrafica, storia della vegetazione e del popolamento antropico. Il Quaternario. Italian Journal of Quaternary Sciences 20(2), 163–184 (2007).

    Google Scholar 

  • 144.

    Bertola, S. et al. L’Epigravettiano recente nell’area prealpina e alpina orientale in L’Italia tra 15.000 e 10.000 anni fa, Cosmopolitismo e regionalità nel Tardoglaciale (ed. Martini, F.) Studi di Archeologia Preistorica 5 (Millenni, Museo Fiorentino di Preistoria “Paolo Graziosi”) 39-94 (2007).

  • 145.

    Fournier, J. Etablissement d’un référentiel actualiste de saisonnalité pour la marmotte des Alpes (collection Couturier – Muséum d’histoire Naturelle de Grenoble). Mémoire de Master 2 de recherché. Universitè de Provence, Ecole Doctorale: Espèce, culture et société. (2005).

  • 146.

    Gay, I. La saisonnalité des occupations humaines au Tardiglaciaire dans les Alpes occidentales. Thèse de 3ème cycle, Préhistorie, Maison Mèditerranéènne des Sciences de l’Homme. (2015).

  • 147.

    Arrighi, S., Bazzanella, M., Boschin, F. & Wierer, U. How to make and use a bone “spatula”. An experimental program based on the Mesolithic osseous assemblage of Galgenbühel/Dos de la Forca (Salurn/Salorno, BZ, Italy). Quaternary International 423, 143–165 (2016).

    ADS  Google Scholar 

  • 148.

    Crezzini, J., Boschin, F., Boscato, P. & Wierer, U. Wild cats and cut marks: Exploitation of Felis silvestris in the Mesolithic of Galgenbühel/Dos de la Forca (South Tyrol, Italy). Quaternary International 330, 52–60 (2014).

    ADS  Google Scholar 

  • 149.

    Moretti, E. et al. Using 3D microscopy to analyze experimental cut marks on animal bones produced with different stone tools. Ethnobiology Letters 6(2), 267–275 (2015).

    MathSciNet  Google Scholar 

  • 150.

    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleontologia Electronica 4(1), 1–9 (2001).

    Google Scholar 


  • Source: Ecology - nature.com

    Structural and functional shifts of soil prokaryotic community due to Eucalyptus plantation and rotation phase

    Peatland drainage in Southeast Asia adds to climate change