in

Photographic database of the European cave salamanders, genus Hydromantes

  • 1.

    Wake, D. B. The enigmatic history of the European, Asian and American plethodontid salamanders. Amphibia-Reptilia 34, 323–336 (2013).

    Article  Google Scholar 

  • 2.

    Lanza, B., Pastorelli, C., Laghi, P. & Cimmaruta, R. A review of systematics, taxonomy, genetics, biogeography and natural history of the genus Speleomantes Dubois, 1984 (Amphibia Caudata Plethodontidae). Atti del Museo Civico di Storia Naturale di Trieste 52, 5–135 (2006).

    Google Scholar 

  • 3.

    Chiari, Y. et al. Phylogeography of Sardinian cave salamanders (genus Hydromantes) is mainly determined by geomorphology. PLoS One 7, e32332, https://doi.org/10.1371/journal.pone.0032332 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Ficetola, G. F., Lunghi, E., Cimmaruta, R. & Manenti, R. Transgressive niche across a salamander hybrid zone revealed by microhabitat analyses. Journal of Biogeography 46, 1342–1354, https://doi.org/10.1111/jbi.13621 (2019).

    Article  Google Scholar 

  • 5.

    Ficetola, G. F., Pennati, R. & Manenti, R. Do cave salamanders occur randomly in cavities? An analysis with Hydromantes strinatii. Amphibia-Reptilia 33, 251–259 (2012).

    Article  Google Scholar 

  • 6.

    Lunghi, E., Manenti, R. & Ficetola, G. F. Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecologica 55, 29–35, https://doi.org/10.1016/j.actao.2013.11.003 (2014).

    ADS  Article  Google Scholar 

  • 7.

    Costa, A., Crovetto, F. & Salvidio, S. European plethodontid salamanders on the forest floor: local abundance is related to fine-scale environmental factors. Herpetological Conservation and Biology 11, 344–349 (2016).

    Google Scholar 

  • 8.

    Ficetola, G. F. et al. Differences between microhabitat and broad-scale patterns of niche evolution in terrestrial salamanders. Scientific Reports 8, 10575, https://doi.org/10.1038/s41598-018-28796-x (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Culver, D. C. & Pipan, T. The biology of caves and other subterranean habitats. Second edition 336 (Oxford University Press, 2019).

  • 10.

    Lunghi, E. et al. Comparative reproductive biology of European cave salamanders (genus Hydromantes): nesting selection and multiple annual breeding. Salamandra 54, 101–108 (2018).

    Google Scholar 

  • 11.

    Lunghi, E., Manenti, R. & Ficetola, G. F. Seasonal variation in microhabitat of salamanders: environmental variation or shift of habitat selection? PeerJ 3, e1122, https://doi.org/10.7717/peerj.1122 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Lunghi, E. et al. Environmental suitability models predict population density, performance and body condition for microendemic salamanders. Scientific Reports 8, 7527, https://doi.org/10.1038/s41598-018-25704-1 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Manenti, R., Lunghi, E. & Ficetola, G. F. Distribution of spiders in cave twilight zone depends on microclimatic features and trophic supply. Invertebrate Biology 134, 242–251, https://doi.org/10.1111/ivb.12092 (2015).

    Article  Google Scholar 

  • 14.

    Lunghi, E. et al. What shapes the trophic niche of European plethodontid salamanders? PLoS ONE 13, e0205672, https://doi.org/10.1371/journal.pone.0205672 (2018).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Ficetola, G. F., Pennati, R. & Manenti, R. Spatial segregation among age classes in cave salamanders: habitat selection or social interactions? Population Ecology 55, 217–226 (2013).

    Article  Google Scholar 

  • 16.

    Salvidio, S. Homing behaviour in Speleomantes strinatii (Amphibia Plethodontidae): a preliminary displacement experiment. North-Western Journal of Zoology 9, 429–433 (2013).

    Google Scholar 

  • 17.

    Oneto, F., Ottonello, D., Pastorino, M. V. & Salvidio, S. In Scripta Herpetologica. Studies on Amphibians and Reptiles in honour of Benedetto Lanza (eds M. Capula & C. Corti) 129–138 (Edizioni Belvedere, 2014).

  • 18.

    Zagmajster, M., Culver, D. C., Christman, M. C. & Sket, B. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodiversity and Conservation 19, 3035–3048, https://doi.org/10.1007/s10531-010-9873-2 (2010).

    Article  Google Scholar 

  • 19.

    MacNeil, R. R. & Brcic, J. Coping with the subterranean environment: a thematic content analysis of the narratives of cave explorers. Journal of Human Performance in Extreme Environments 13, Article 6, https://doi.org/10.7771/2327-2937.1089 (2017).

    Article  Google Scholar 

  • 20.

    Rondinini, C., Battistoni, A., Peronace, V. & Teo li, C. Lista Rossa IUCN dei Vertebrati Italiani. (Comitato Italiano IUCN e Ministero dell’Ambiente e della Tutela del Territorio e del Mare, 2013).

  • 21.

    European Community. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal of the European Union L 206/7, 1–44 (1992).

    Google Scholar 

  • 22.

    Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. BioScience 69, 641–650, https://doi.org/10.1093/biosci/biz064 (2019).

    Article  Google Scholar 

  • 23.

    Martel, A. et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346, 630, https://doi.org/10.1126/science.1258268 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 24.

    Crovetto, F., Romano, A. & Salvidio, S. Comparison of two non-lethal methods for dietary studies in terrestrial salamanders. Wildlife Research 39, 266–270, https://doi.org/10.1071/WR11103 (2012).

    Article  Google Scholar 

  • 25.

    Ficetola, G. F. et al. N-mixture models reliably estimate the abundance of small vertebrates. Scientific Reports 8, 10357, https://doi.org/10.1038/s41598-018-28432-8 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Lunghi, E. & Veith, M. Are Visual Implant Alpha tags adequate for individually marking European cave salamanders (genus Hydromantes)? Salamandra 53, 541–544 (2017).

    Google Scholar 

  • 27.

    Miyazaki, Y. et al. Biological monitoring by citizens using Web-based photographic databases of fishes. Biodiversity and Conservation 23, 2383–2391, https://doi.org/10.1007/s10531-014-0724-4 (2014).

    Article  Google Scholar 

  • 28.

    Karanth, K. U., Kumar, N. S. & Vasudev, D. Photographic database informs management of conflict tigers. Oryx 48, 481–485 (2014).

    Article  Google Scholar 

  • 29.

    Charbonnier, L., van Meer, F., van der Laan, L. N., Viergever, M. A. & Smeets, P. A. M. Standardized food images: A photographing protocol and image database. Appetite 96, 166–173, https://doi.org/10.1016/j.appet.2015.08.041 (2016).

    Article  PubMed  Google Scholar 

  • 30.

    Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. Using digital photography to study animal coloration. Biological Journal of the Linnean Society 90, 211–237 (2007).

    Article  Google Scholar 

  • 31.

    Moussi, A. & Tlili, H. Photographic database of North African Acridomorpha (Orthoptera, Caelifera) type specimens deposited at NHM London. Metaleptea 40, 14–15 (2020).

    Google Scholar 

  • 32.

    Lunghi, E. et al. Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodiversity Data Journal 8, e48623, https://doi.org/10.3897/BDJ.8.e48623 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Wynne, J. J., Howarth, F. G., Sommer, S. & Dickson, B. G. Fifty years of cave arthropod sampling: techniques and best practices. International Journal of Speleology 48, 33–48, https://doi.org/10.5038/1827-806X.48.1.2231 (2019).

    Article  Google Scholar 

  • 34.

    Tulloch, A. I. T. et al. A decision tree for assessing the risks and benefits of publishing biodiversity data. Nature Ecology & Evolution 2, 1209–1217, https://doi.org/10.1038/s41559-018-0608-1 (2018).

    Article  Google Scholar 

  • 35.

    Lunghi, E. et al. Field-recorded data on the diet of six species of European Hydromantes cave salamanders. Scientific Data 5, 180083, https://doi.org/10.1038/sdata.2018.83 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Lunghi, E., Zhao, Y., Sun, X. & Zhao, Y. Morphometrics of eight Chinese cavefish species. Scientific Data 6, 233, https://doi.org/10.1038/s41597-019-0257-5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 37.

    Lunghi, E., Corti, C., Manenti, R. & Ficetola, G. F. Consider species specialism when publishing datasets. Nature Ecology & Evolution 3, 319, https://doi.org/10.1038/s41559-019-0803-8 (2019).

    Article  Google Scholar 

  • 38.

    Barke, R. J., Schofield, M. R., Link, W. A. & Sauer, J. R. On the reliability of N-mixture models for count data. Biometrics, 1–9, https://doi.org/10.1111/biom.12734 (2017).

    MathSciNet  Article  Google Scholar 

  • 39.

    Salvidio, S. Estimating abundance and biomass of Speleomantes strinatii (Caudata, Plethodontidae) population by temporal removal sampling. Amphibia-Reptilia 19, 113–124 (1998).

    Article  Google Scholar 

  • 40.

    Black, C. E., Mumby, H. S. & Henley, M. D. Mining morphometrics and age from past survey photographs. Frontiers in Zoology 16, 14, https://doi.org/10.1186/s12983-019-0309-x (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Ambrogio, A. & Mezzadri, S. Geotritoni d’Italia – Cave Salamanders of Italy. 64 (Gavia Edizioni, 2017).

  • 42.

    Lunghi, E. et al. Melanism in European plethodontid salamanders. Spixiana 40, 157–160 (2017).

    Google Scholar 

  • 43.

    Lunghi, E. et al. Cases of albinism and leucism in amphibians in Italy: new reports. Natural History. Sciences (Atti della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano) 4, 73–80, https://doi.org/10.4081/nhs.2017.311 (2017).

    Article  Google Scholar 

  • 44.

    Jareonruen, Y. & Tuamsuk, K. Lifecycle and requirements for digital collection management of Thai theses and dissertations. Journal of Information Science Theory and Practice 7, 52–64, https://doi.org/10.1633/JISTaP.2019.7.3.5 (2019).

    Article  Google Scholar 

  • 45.

    Marchionni, P. & Findlay, P. New models for open digital collections? Insights 30, 44–50, https://doi.org/10.1629/uksg.375 (2017).

    Article  Google Scholar 

  • 46.

    Pääkkönen, T. Crowdsourcing metrics of digital collections. Liber Quarterly 25, 41–55, https://doi.org/10.18352/lq.10090 (2015).

    Article  Google Scholar 

  • 47.

    Erolin, C., Jarron, M. & Csetenyi, L. J. Zoology 3D: Creating a digital collection of specimens from the D′Arcy Thompson Zoology Museum. Digital Applications in Archaeology and Cultural Heritage 7, 51–55, https://doi.org/10.1016/j.daach.2017.11.002 (2017).

    Article  Google Scholar 

  • 48.

    Lunghi, E., Guillaume, O., Blaimont, P. & Manenti, R. The first ecological study on the oldest allochthonous population of European cave salamanders (Hydromantes sp.). Amphibia-Reptilia 39, 113–119, https://doi.org/10.1163/15685381-00003137 (2018).

    Article  Google Scholar 

  • 49.

    Ficetola, G. F., Lunghi, E. & Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 43, 1–11, https://doi.org/10.1111/ecog.04798 (2020).

    Article  Google Scholar 

  • 50.

    Lunghi, E. et al. Photographic database of the European cave salamanders, genus Hydromantes (Amphibia: Caudata). figshare https://doi.org/10.6084/m9.figshare.c.4876788 (2020).

  • 51.

    Lunghi, E. et al. Thermal equilibrium and temperature differences among body regions in European plethodontid salamanders. Journal of Thermal Biology 60, 79–85, https://doi.org/10.1016/j.jtherbio.2016.06.010 (2016).

    Article  PubMed  Google Scholar 

  • 52.

    MacCoun, R. & Perlmutter, S. Hide results to seek the truth. Nature 526, 187–189, https://doi.org/10.1038/526187a (2015).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 53.

    Lunghi, E. & Bruni, G. Long-term reliability of Visual Implant Elastomers in the Italian cave salamander (Hydromantes italicus). Salamandra 54, 283–286 (2018).

    Google Scholar 

  • 54.

    Lanza, B., Caputo, V., Nascetti, G. & Bullini, L. Morphologic and genetic studies of the European plethodontid salamanders: taxonomic inferences (genus Hydromantes). Monografie del Museo Regionale di Scienze Naturali, Torino 16, 1–366 (1995).

    Google Scholar 

  • 55.

    Baken, E. K., Mellenthin, L. E. & Adams, D. C. Macroevolution of desiccation-related morphology in plethodontid salamanders as inferred from a novel surface area to volume ratio estimation approach. Evolution 74, 476–486, https://doi.org/10.1111/evo.13898 (2020).

    Article  PubMed  Google Scholar 

  • 56.

    Ficetola, G. F. et al. Morphological variation in salamanders and their potential response to climate change. Global Change Biology 22, 2013–2024, https://doi.org/10.1111/gcb.13255 (2016).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 57.

    Weller, H. I. & Westneat, M. W. Quantitative color profiling of digital images with earth mover’s distance using the R package colordistance. PeerJ 7, e6398, https://doi.org/10.7717/peerj.6398 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 58.

    Adams, D., Collyer, M. & Kaliontzopoulou, A. geomorph. Geometric Morphometric Analyses of 2D/3D Landmark Data. R package version 3.2.1, https://github.com/geomorphR/geomorph (2020).

  • 59.

    Bingham, R. E., Papenfuss, T. J., Lindstrand, L. I. & Wake, D. B. Phylogeography and species boundaries in the Hydromantes shastae complex, with description of two new species (Amphibia; Caudata; Plethodontidae). Bulletin of the Museum of Comparative Zoology 161, 403–427 (2018).

    Article  Google Scholar 

  • 60.

    Lunghi, E. et al. On the stability of the dorsal pattern of European cave salamanders (genus Hydromantes). Herpetozoa 32, 249–253, https://doi.org/10.3897/herpetozoa.32.e39030 (2019).

    Article  Google Scholar 

  • 61.

    Treilibs, C. E., Pavey, C. R., Hutchinson, M. N. & Bull, C. M. Photographic identification of individuals of a free-ranging, small terrestrial vertebrate. Ecology and Evolution 6, 800–809, https://doi.org/10.1002/ece3.1883 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 62.

    Sharifi, M., Naderi, B. & Hashemi, R. Suitability of the photographic identification method as a tool to identify the endangered Yellow spotted newt, Neurergus microspilotus (Caudata: Salamandridae). Russian Journal of Herpetology 20, 264–270 (2013).

    Google Scholar 

  • 63.

    Allen-Blevins, C. R., You, X., Hinde, K. & Sela, D. A. Handling stress may confound murine gut microbiota studies. PeerJ 5, e2876, https://doi.org/10.7717/peerj.2876 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Samimi, A. S., Tajik, J., Jarakani, S. & Shojaeepour, S. Evaluation of a five-minute resting period following handling stress on electrocardiogram parameters and cardiac rhythm in sheep. Veterinary Science Development 6, 6481, https://doi.org/10.4081/vsd.2016.6481 (2016).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Controlling plasma and plasma turbulence

    MIT startup wraps food in silk for better shelf life