in

Population dynamics of threatened Lahontan cutthroat trout in Summit Lake, Nevada

  • 1.

    Ricciardi, A. & Rasmussen, J. B. Extinction rates of North American freshwater fauna. Conserv. Biol. 13, 1220–1222 (1999).

    Google Scholar 

  • 2.

    Butchart, S. H. et al. Global biodiversity: indicators of recent declines. Science. 328(5982), 1164–1168 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 3.

    Burkhead, N. M. Extinction rates in North American freshwater fishes, 1900-2010. Bioscience. 62(9), 798–808 (2012).

    Google Scholar 

  • 4.

    Brouder, M. J. & Scheurer, J. A. Status, Distribution, and Conservation of Native Freshwater Fishes of Western North America: A Symposium Proceedings (American Fisheries Society, 2007).

  • 5.

    Cayan, D. R. et al. Natural variability, anthropogenic climate change, and impacts on water availability and flood extremes in the western United States In Water Policy and Planning in a Variable Changing Climate (ed. Miller, K.A et al.). 17-42 (CRC Press, 2016).

  • 6.

    Lynch, A. J. et al. Climate change effects on North American inland fish populations and assemblages. Fisheries. 41(7), 346–361 (2016).

    Google Scholar 

  • 7.

    Whitney, J. E. et al. Physiological basis of climate change impacts on North American inland fishes. Fisheries. 41(7), 332–345 (2016).

    Google Scholar 

  • 8.

    Harpold, A. A., Dettinger, M. & Rajagopal, S. Defining snow drought and why it matters. Eos. 98, https://doi.org/10.1029/2017EO068775 (2017).

  • 9.

    Paukert, C. et al. Adapting inland fisheries management to a changing climate. Fisheries. 41(7), 374–384 (2016).

    Google Scholar 

  • 10.

    Trotter, P. Cutthroat: Native Trout of the West, 2nd edn (University of California Press, 2008).

  • 11.

    Loxterman, J. L. & Keeley, E. R. Watershed boundaries and geographic isolation: patterns of diversification in cutthroat trout from western North America. BMC Evol. Biol. 12(1), 38 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    USFWS. ECOS Environmental conservation online system. https://ecos.fws.gov/ecp0/pub/SpeciesReport.do?groups=E&listingType=L&mapstatus=1, accessed 7 May 2018 (2017).

  • 13.

    Stapp, P. & Hayward, G. D. Effects of an introduced piscivore on native trout: insights from a demographic model. Biol. Invasions. 4, 299–316 (2002).

    Google Scholar 

  • 14.

    Rissler, P. H., Scoppettone, G. G. & Shea S. Life history, ecology and population viability analysis of the Independence Lake strain Lahontan cutthroat trout (Oncorhynchus clarkii henshawi) (U.S. Geological Survey, 2006).

  • 15.

    Budy, P., Thiede, G. P. & McHugh, P. Quantification of the vital rates, abundance, and status of a critical, endemic population of Bonneville cutthroat trout. N. Am. J. Fish. Manag. 27, 593–604 (2007).

    Google Scholar 

  • 16.

    Johnston, F. D. et al. The demography of recovery of an overexploited bull trout, Salvelinus confluentus, population. Can. J. Fish. Aquat. Sci. 64(1), 113–126 (2007).

    Google Scholar 

  • 17.

    High, B., Meyer, K., Schill, D. J. & Mamer, E. R. J. Distribution, abundance, and population trends of bull trout in Idaho. N. Am. J. Fish. Manag. 28, 1687–1701 (2008).

    Google Scholar 

  • 18.

    Brenden, T. O., Bence, J. R., Lantry, B. F., Lantry, J. R. & Schaner, T. Population dynamics of Lake Ontario lake trout during 1985-2007. N. Am. J. Fish. Manag. 31, 962–979 (2011).

    Google Scholar 

  • 19.

    Cox, B. S., Guy, C. S., Fredenberg, W. A. & Rosenthal, L. R. Baseline demographics of a non-native lake trout population and inferences for suppression from sensitivity-elasticity analyses. Fish. Manag. Ecol. 20, 390–400 (2013).

    Google Scholar 

  • 20.

    Meyer, K. A., Larson, E. I., Sullivan, C. L. & High, B. Trends in the distribution and abundance of Yellowstone cutthroat trout and nonnative trout in Idaho. J. Fish. Wildl. Manag. 5(2), 227–242 (2014).

    Google Scholar 

  • 21.

    Kennedy, P. & Meyer, K. Trends in abundance and the influence of bioclimatic factors on Westslope cutthroat trout in Idaho. J. Fish. Wildl. Manag. 6(2), 305–317 (2015).

    Google Scholar 

  • 22.

    Ng, E. L., Fredericks, J. P. & Quist, M. C. Population dynamics and evaluation of alternative management strategies for nonnative lake trout in Priest Lake, Idaho. N. Am. J. Fish. Manag. 36(1), 40–54 (2016).

    Google Scholar 

  • 23.

    Budy, P. E., Bowerman, T., Al-Chokhachy, R., Conner, M. & Schaller, H. Quantifying long-term population growth rates of threatened bull trout: challenges, lessons learned, and opportunities. Can. J. Fish. Aquat. Sci. 74, 2131–2143 (2017).

    Google Scholar 

  • 24.

    Carim, K. J., Vindenes, Y., Eby, L. A., Barfoot, C. & Vøllestad, L. A. Life history, population viability, and the potential for local adaptation in isolated trout populations. Glob. Ecol. Conserv. 10, 93–102 (2017).

    Google Scholar 

  • 25.

    Gerstung, E. R. Status, life history, and management of the Lahontan cutthroat trout In Status and Management of Interior Stocks of Cutthroat Trout (ed. Gresswell, R.E.) 93-106 (American Fisheries Society, 1988).

  • 26.

    Coffin, P. D. & Cowan, W. F. Lahontan cutthroat trout (Oncorhynchus clarki henshawi) recovery plan (U.S. Fish and Wildlife Service, 1995).

  • 27.

    Curry, B. B. & Melhorn, W. N. Summit Lake landslide and geomorphic history of Summit Lake basin, northwestern Nevada. Geomorphology. 4, 1–17 (1990).

    ADS  Google Scholar 

  • 28.

    Vinyard, G. L. & Winzeler, A. Lahontan cutthroat trout (Oncorhynchus clarki henshawi) spawning and downstream migration of juveniles into Summit Lake, Nevada. West. N. Am. Nat. 60(3), 333–341 (2000).

    Google Scholar 

  • 29.

    SLPT. Our Story. Summit Lake Paiute Tribe. http://www.summitlaketribe.org/about-us.html, accessed 22 Jan 2018.

  • 30.

    Vigg, S. & Koch, D. L. Upper lethal temperature range of Lahontan cutthroat trout in waters of different ionic concentration. Trans. Am. Fish. Soc. 109, 336–339 (1980).

    CAS  Google Scholar 

  • 31.

    Gall, G. A. E. & Loudenslager, E. J. Biochemical genetics and systematics of Nevada trout populations, Final Report to Nevada Department of Wildlife (University of California, 1981).

  • 32.

    Wilkie, M. P. & Wood, C. The adaptations of fish to extremely alkaline environments. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 113(4), 665–673 (1996).

    Google Scholar 

  • 33.

    Dickerson, B. R. & Vinyard, G. L. Effects of high chronic temperatures and diel temperature cycles on the survival and growth of Lahontan cutthroat trout. Trans. Am. Fish. Soc. 128, 516–521 (1999).

    Google Scholar 

  • 34.

    Nielsen, J. L. & Sage, G. K. Population genetic structure in Lahontan cutthroat trout. Trans. Am. Fish. Soc. 131, 376–388 (2002).

    Google Scholar 

  • 35.

    La Rivers, I. Fishes and fisheries of Nevada (University of Nevada Press, 1994).

  • 36.

    NRCS. Snow Telemetry (SNOTEL) and Snow Course Data and Products. https://www.wcc.nrcs.usda.gov/snow, accessed 1 August 2019.

  • 37.

    Drummond, R. A. & McKinney, T. D. Predicting the recruitment of cutthroat trout fry in Trappers Lake, Colorado. Trans. Am. Fish. Soc. 94(4), 389–393 (1965).

    Google Scholar 

  • 38.

    Morán, P., Labbé, L. & Garcia de Leaniz, C. The male handicap: male-biased mortality explains skewed sex ratios in brown trout embryos. Biol. Lett. 12(12), 20160693 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Recsetar, M. & Bonar, S. Survival of Apache trout eggs and alevins under static and fluctuating temperature regimes. Trans. Am. Fish. Soc. 142, 373–379 (2013).

    Google Scholar 

  • 40.

    Campbell, T. et al. Population connectivity of adfluvial and stream-resident Lahontan cutthroat trout: Implications for resilience, management, and restoration. Can. J. Fish. Aquat. Sci. 76(3), 426–437 (2019).

    Google Scholar 

  • 41.

    Alexiades, A. V., Peacock, M. M. & Al-Chokhachy, R. Movement patterns, habitat use, and survival of Lahontan cutthroat trout in the Truckee River. N. Am. J. Fish. Manag. 32, 974–83 (2012).

    Google Scholar 

  • 42.

    Sedinger, J. S., Blomberg, E. J., VanDellen, A. W. & Byers, S. Environmental and population strain effects on survival of Lahontan cutthroat trout in Walker Lake, Nevada: a Bayesian approach. N. Am. J. Fish. Manag. 32, 515–522 (2012).

    Google Scholar 

  • 43.

    Williams, B. K., Nichols, J. D. & Conley, M. J. Analysis and Management of Animal Populations (Academic Press, 2002).

  • 44.

    Kostow, K. Differences in juvenile phenotypes and survival between hatchery stocks and a natural population provide evidence for modified selection due to captive breeding. Can. J. Fish. Aquat. Sci. 61, 577–589 (2004).

    Google Scholar 

  • 45.

    Araki, H., Berejikian, B. A., Ford, M. J. & Blouin, M. S. Fitness of hatchery-reared salmonids in the wild. Evol. Appl. 1(2), 342–355 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Jones, J. California’s most significant droughts: comparing historical and recent conditions (California Natural Resources Agency, 2015).

  • 47.

    Dickerson, B. R. & Vinyard, G. L. Effects of high levels of total dissolved solids in Walker Lake, Nevada, on survival and growth of Lahontan cutthroat trout. Trans. Am. Fish. Soc. 128, 507–515 (1999).

    Google Scholar 

  • 48.

    Marioni, N. Effects of declining lake levels on fish populations in Walker Lake, NV (Master’s thesis, University of Nevada Reno, 2007).

  • 49.

    Margulis, S. A., Cortés, G., Girotto, M. & Durand, M. A Landsat-era Sierra Nevada snow reanalysis (1985–2015). J. Hydrometeorol. 17, 1203–1221 (2016).

    ADS  Google Scholar 

  • 50.

    Mills, K. H., Chalanchuk, S. M. & Allan, D. J. Abundance, annual survival, and recruitment of unexploited and exploited lake charr, Salvelinus namaycush, populations at the Experimental Lakes Area, northwestern Ontario. Environ. Biol. Fish. 64, 281–292 (2002).

    Google Scholar 

  • 51.

    Al-Chokhachy, R. & Budy, P. Demographic characteristics, population structure, and vital rates of a fluvial population of bull trout in Oregon. Trans. Am. Fish. Soc. 137(6), 1709–1722 (2008).

    Google Scholar 

  • 52.

    Syslo, J. M. et al. Response of non-native lake trout (Salvelinus namaycush) to 15 years of harvest in Yellowstone Lake, Yellowstone National Park. Can. J. Fish. Aquat. Sci. 68, 2132–2145 (2011).

    Google Scholar 

  • 53.

    Jonsson, B., Jonsson, N. & Hansen, L. P. Factors affecting river entry of adult Atlantic salmon in a small river. J. Fish. Biol. 71, 943–956 (2007).

    Google Scholar 

  • 54.

    Wise, E. Five centuries of US West Coast drought: occurrence, spatial distribution, and associated atmospheric circulation patterns. Geophys. Res. Lett. 43, 4539–4546, https://doi.org/10.1002/2016GL068487 (2016).

    ADS  Article  Google Scholar 

  • 55.

    Elliott, J. M., Hurley, M. A. & Elliott, J. A. Variable effects of droughts on the density of a seat-trout Salmo trutta population over 30 years. J. Appl. Ecol. 34, 1229–1238 (1997).

    Google Scholar 

  • 56.

    Humphries, P. & Baldwin, D. Drought and aquatic ecosystems: an introduction. Freshw. Biol. 48, 1141–1146 (2003).

    Google Scholar 

  • 57.

    Matthews, W. J. & Marsh-Matthews, E. Effects of drought on fish across axes of space, time, and ecological complexity. Freshw. Biol. 48, 1232–1253 (2003).

    Google Scholar 

  • 58.

    Lobon-Cervia, J. Why, when and how do fish populations decline, collapse and recover? The example of brown trout (Salmo trutta) in Rio Chaballos (northwestern Spain). Freshw. Biol. 54, 1149–1162 (2009).

    Google Scholar 

  • 59.

    Groom, M. J., Meffe, G. K. & Carroll, C. R. Principles of Conservation Biology, 3rd edn (Sinauer Associates, Inc., 2006).

  • 60.

    Horne, A. & Goldman, C. Limnology, 2nd edn (McGraw-Hill, Inc., 1994).

  • 61.

    Schreck, C., Contreras-Sanchez, W. & Fitzpatrick, M. Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture. 197, 3–24 (2001).

    Google Scholar 

  • 62.

    Rideout, R. M., Rose, G. A. & Burton, M. P. Skipped spawning in female iteroparous fishes. Fish. 6, 50–72 (2005).

    Google Scholar 

  • 63.

    McBride, R. S. et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish. 16, 23–57 (2015).

    Google Scholar 

  • 64.

    Magoulick, D. D. & Kobza, R. M. The role of refugia for fishes during drought: a review and synthesis. Freshw. Biol. 48, 1186–1198 (2003).

    Google Scholar 

  • 65.

    Parker, R., Youmans, R. & Cowan, W. 2012 Annual Narrative Report, Fisheries Management Services Contract Number CTH61T655U2 (Summit Lake Paiute Tribe, 2013).

  • 66.

    Parker, R., Youmans, R. & Cowan, W. 2013 Annual Narrative Report, Fisheries Management Services Contract Number A10AV00358 (Summit Lake Paiute Tribe, 2014).

  • 67.

    Saenz, J., Zeyer, R. & Cowan, W. 2014 Annual Narrative Report, Fisheries Management Services Contract Number A10AV00358 (Summit Lake Paiute Tribe, 2015).

  • 68.

    Penaluna, B. E., Dunham, J. B. & Noakes, D. G. Instream cover and shade mediate avian predation on trout in semi-natural streams. Ecol. Freshw. Fish. 25, 405–411 (2016).

    Google Scholar 

  • 69.

    Zeyer, R., Sáenz, J. & Cowan, W. 2015 Annual Narrative Report, Fisheries Management Services Contract Number A10AV00358 (Summit Lake Paiute Tribe, 2016).

  • 70.

    Youmans, R., Zeyer, R., Mathews, K. & Cowan, W. 2016 Annual Narrative Report, Report No.: Fisheries Management Services Contract Number A10AV00358 (Summit Lake Paiute Tribe, 2017).

  • 71.

    Walters, A. W., Bartz, K. K. & McClure, M. M. Interactive effects of water diversion and climate change for juvenile chinook salmon in the Lemhi River Basin (USA). Conserv. Biol. 27(6), 1179–1189 (2013).

    PubMed  Google Scholar 

  • 72.

    Fenkes, M., Shiels, H. A., Fitzpatrick, J. L. & Nudds, R. L. The potential impacts of migratory difficulty, including warmer waters and altered flow conditions, on the reproductive success of salmonid fishes. Comp. Biochem. Physiol., Part A. 193, 11–21 (2016).

    CAS  Google Scholar 

  • 73.

    White, G. C., Kendall, W. L., & Barker, R. J. Multistate survival models and their extensions in Program MARK. J. Wildl. Manage. 70(6), 1521–1529 (2006).

  • 74.

    Tenan, S. et al. Evaluating mortality rates with a novel integrated framework for nonmonogamous species. Conserv. Biol. 30(6), 1307–1319 (2016).

    PubMed  Google Scholar 

  • 75.

    Johnston, F. D. & Post, J. R. Density-dependent life-history compensation of an iteroparous salmonid. Ecol. Appl. 19(2), 449–467 (2009).

    PubMed  Google Scholar 

  • 76.

    Xue, T. et al. Long-term trends in precipitation and precipitation extremes and underlying mechanisms in the U.S. Great Basin during 1951–2013. J. Geophys. Res. Atmos. 122, 6152–6169 (2017).

    ADS  Google Scholar 

  • 77.

    Vigg, S. Limnological survey of Summit Lake, Nevada (Desert Research Institute, 1983).

  • 78.

    Rzyska-Filipek, N., Youmans, R., Mathews, K. & Cowan, W. 2017 Annual Narrative Report, Fisheries Management Services Contract Number A10AV00358 (Summit Lake Paiute Tribe, 2018).

  • 79.

    SLPT. Minutes-Resolutions. http://www.summitlaketribe.org/minutes-resolutions.html, accessed 7 May 2018.

  • 80.

    Cowan, W. F. Interpretation of pertinent statistics concerning the Summit Lake fisheries management program, 1968-1990 (Summit Lake Paiute Tribe, 1991).

  • 81.

    Novak-Echenique, P. & Youmans, R. Summit Lake Indian Reservation Range Management Plan (United States Department of Agriculture and Summit Lake Paiute Tribe, 2013).

  • 82.

    Hubert, W. A., Pope, K. L. & Dettmers, J. M. Passive Capture Techniques In Fisheries Techniques, 3rd edn (ed. Zale, A. V., et al.) 223–265 (American Fisheries Society, 2012).

  • 83.

    Sigler, W. F., Helm, W. T., Kucera, P. A., Vigg, S. & Workman, G. W. Life history of the Lahontan cutthroat trout, Salmo clarki henshawi, in Pyramid Lake, NV. Great Basin Nat. 43(1), 1–29 (1983).

    Google Scholar 

  • 84.

    Beauchamp, D. A., Vecht, S. A. & Thomas, G. L. Temporal, spatial, and size-related foraging of wild cutthroat trout in Lake Washington. Northwest Sci. 66(3), 149–159 (1992).

    Google Scholar 

  • 85.

    Baldwin, C. S., Beauchamp, D. A. & Gubala, C. P. Seasonal and diel distribution and movement of cutthroat trout from ultrasonic telemetry. Trans. Am. Fish. Soc. 131, 143–158 (2002).

    Google Scholar 

  • 86.

    Gibbons, J. W. & Andrews, K. M. PIT tagging: simple technology at its best. Bioscience. 54(5), 447–454 (2004).

    Google Scholar 

  • 87.

    Benke, R. J. Trout and salmon of North America, 1st edn (The Free Press, 2002).

  • 88.

    Merz, J. E. & Merz, W. R. Morphological features used to identify Chinook salmon sex during fish passage. The Southwest Nat. 49(2), 197–202 (2004).

    MathSciNet  Google Scholar 

  • 89.

    Kazyak, D. C., Hildebrand, R. H. & Holloway, A. E. Rapid visual assessment to determine sex in brook trout. N. Am. J. Fish. Manag. 33, 665–668 (2013).

    Google Scholar 

  • 90.

    Nitychoruk, J. M. et al. Sexual and seasonal dimorphism in adult adfluvial bull trout (Salvelinus confluentus). Can. J. Fish. Aquat. Sci. 91, 480–488 (2013).

    Google Scholar 

  • 91.

    Nichols, J. D., Kendall, W. L., Hines, J. E. & Spendelow, J. A. Estimation of sex-specific survival from capture-recapture data when sex is not always known. Ecology. 85(12), 3192–3201 (2004).

    Google Scholar 

  • 92.

    Kendall, W. L. & Pollock, K. H. The robust design in capture-recapture studies: a review and evaluation by Monte Carlo simulation In Wildlife 2001: Populations (ed. McCullough, D. R. et al.) 31-43 (Elsevier, 1992).

  • 93.

    Stanley, T. R. & Richards, J. D. Software review: a program for testing capture-recapture data for closure. Wildl. Soc. Bull. 33(2), 782–785 (2005).

    Google Scholar 

  • 94.

    Stanley, T. R. & Richards, J. D. CloseTest. USGS Fort Collins Science Center. https://www.sciencebase.gov/catalog/item/53c5b442e4b0b58d96eeb76e, accessed 8 Nov 2019 (2011)

  • 95.

    Kendall, W. L. Robustness of closed capture-recapture methods to violations of the closure assumption. Ecology. 80(8), 2517–2525 (1999).

    Google Scholar 

  • 96.

    White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Stud. 46, 120–139 (1999).

    Google Scholar 

  • 97.

    Pradel, R. Utilization of capture–mark–recapture for the study of recruitment and population growth rate. Biometrics. 52(2), 703–709 (1996).

  • 98.

    Huggins, R. M. On the statistical analysis of capture experiments. Biometrika. 76, 133–140 (1989).

    MathSciNet  MATH  Google Scholar 

  • 99.

    Huggins, R. M. Some practical aspects of a conditional likelihood approach to capture experiments. Biometrics. 47, 725–732 (1991).

    Google Scholar 

  • 100.

    Akaike, H. Information theory as an extension of the maximum likelihood principle In Second International Symposium on Information Theory (ed. Petrov, B. N. et al.) 267–281 (Akademiai Kiado, 1973).

  • 101.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach, 2nd edn (Springer, 2002).


  • Source: Ecology - nature.com

    MIT startup wraps food in silk for better shelf life

    Unlocking the secrets of a plastic-eater