in

Determinants of genetic variation across eco-evolutionary scales in pinnipeds

  • 1.

    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 2.

    Secretariat of the Convention on Biological Diversity Global Biodiversity Outlook 4 (World Trade Centre, 2014).

  • 3.

    Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).

    CAS  PubMed  Google Scholar 

  • 5.

    Frankham, R. Effective population size/adult population size ratios in wildlife: a review. Genet. Res. 66, 95–107 (1995).

    Google Scholar 

  • 6.

    Leffler, E. M. et al. Revisiting an old riddle: what determines genetic diversity levels within species? PLoS Biol. 10, e1001388 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, 1974).

  • 8.

    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).

    CAS  PubMed  Google Scholar 

  • 9.

    Lynch, M. et al. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17, 704–714 (2016).

    CAS  PubMed  Google Scholar 

  • 10.

    Cutter, A. D. & Payseur, B. A. Genomic signatures of selection at linked sites: unifying the disparity among species. Nat. Rev. Genet. 14, 262–274 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Corbett-Detig, R. B., Hartl, D. L. & Sackton, T. B. Natural selection constrains neutral diversity across a wide range of species. PLoS Biol. 13, e1002112 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 12.

    Coop, G. Does linked selection explain the narrow range of genetic diversity across species? Preprint at bioRxiv https://doi.org/10.1101/042598 (2016).

  • 13.

    Romiguier, J. et al. Comparative population genomics in animals uncovers the determinants of genetic diversity. Nature 515, 261–263 (2014).

    CAS  PubMed  Google Scholar 

  • 14.

    Ferchaud, A.-L. et al. Making sense of the relationships between Ne, Nb and Nc towards defining conservation thresholds in atlantic salmon (Salmo salar). Heredity 117, 268–278 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Lande, R. Genetics and demography in biological conservation. Science 241, 1455–1460 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Palstra, F. P. & Fraser, D. J. Effective/census population size ratio estimation: a compendium and appraisal. Ecol. Evol. 2, 2357–2365 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Waples, R. S. Making sense of genetic estimates of effective population size. Mol. Ecol. 25, 4689–4691 (2016).

    CAS  PubMed  Google Scholar 

  • 18.

    Palstra, F. P. & Ruzzante, D. E. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol. Ecol. 17, 3428–3447 (2008).

    PubMed  Google Scholar 

  • 19.

    Waples, R. S., Luikart, G., Faulkner, J. R. & Tallmon, D. A. Simple life-history traits explain key effective population size ratios across diverse taxa. Proc. R. Soc. B 280, 20131339 (2013).

    PubMed  Google Scholar 

  • 20.

    Leroy, G. et al. Methods to estimate effective population size using pedigree data: examples in dog, sheep, cattle and horse. Genet. Sel. Evol. 45, 1 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Wang, J. Estimation of effective population sizes from data on genetic markers. Phil. Trans. R. Soc. B 360, 1395–1409 (2005).

    CAS  PubMed  Google Scholar 

  • 22.

    Stoffel, M. A. et al. Demographic histories and genetic diversity across pinnipeds are shaped by human exploitation, ecology and life-history. Nat. Commun. 9, 4836 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 23.

    Tenesa, A. et al. Recent human effective population size estimated from linkage disequilibrium. Genome Res. 17, 520–526 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Nordborg, M. & Krone, S. M. in Modern Developments in Theoretical Population Genetics: The Legacy of Gustave Malécot (eds Slatkin, M. & Veuille, M.) 194–232 (Oxford Univ. Press, 2002).

  • 25.

    Vijay, N. et al. Genomewide patterns of variation in genetic diversity are shared among populations, species and higher-order taxa. Mol. Ecol. 26, 4284–4295 (2017).

    PubMed  Google Scholar 

  • 26.

    Wakeley, J. Coalescent Theory: An Introduction (W. H. Freeman, 2008).

  • 27.

    Charlesworth, B. & Jain, K. Purifying selection, drift, and reversible mutation with arbitrarily high mutation rates. Genetics 198, 1587–1602 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Krüger, O., Wolf, J. B. W., Jonker, R. M., Hoffman, J. I. & Trillmich, F. Disentangling the contribution of sexual selection and ecology to the evolution of size dimorphism in pinnipeds. Evolution 68, 1485–1496 (2014).

    PubMed  Google Scholar 

  • 29.

    de Oliveira, L. R., Meyer, D., Hoffman, J., Majluf, P. & Morgante, J. S. Evidence of a genetic bottleneck in an El Niño affected population of South American fur seals, Arctocephalus australis. J. Mar. Biol. Assoc. U.K. 89, 1717–1725 (2009).

    Google Scholar 

  • 30.

    Soto, K. H., Trites, A. W. & Arias-Schreiber, M. The effects of prey availability on pup mortality and the timing of birth of South American sea lions (Otaria flavescens) in Peru. J. Zool. 264, 419–428 (2004).

    Google Scholar 

  • 31.

    Kovacs, K. M. et al. Global threats to pinnipeds. Mar. Mammal Sci. 28, 414–436 (2012).

    Google Scholar 

  • 32.

    Scally, A. The mutation rate in human evolution and demographic inference. Curr. Opin. Genet. Dev. 41, 36–43 (2016).

    CAS  PubMed  Google Scholar 

  • 33.

    Takahata, N. Allelic genealogy and human evolution. Mol. Biol. Evol. 10, 2–22 (1993).

    CAS  PubMed  Google Scholar 

  • 34.

    Brüniche-Olsen, A. et al. The inference of gray whale (Eschrichtius robustus) historical population attributes from whole-genome sequences. BMC Evol. Biol. 18, 87 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Nei, M. & Takahata, N. Effective population size, genetic diversity, and coalescence time in subdivided populations. J. Mol. Evol. 37, 240–244 (1993).

    CAS  PubMed  Google Scholar 

  • 36.

    Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Mazet, O., Rodríguez, W., Grusea, S., Boitard, S. & Chikhi, L. On the importance of being structured: instantaneous coalescence rates and human evolution—lessons for ancestral population size inference? Heredity 116, 362–371 (2016).

    CAS  PubMed  Google Scholar 

  • 38.

    Andersen, L. W. et al. Walruses (Odobenus rosmarus rosmarus) in the Pechora Sea in the context of contemporary population structure of Northeast Atlantic walruses. Biol. J. Linn. Soc. 122, 897–915 (2017).

    Google Scholar 

  • 39.

    Kalinowski, S. T. & Waples, R. S. Relationship of effective to census size in fluctuating populations. Conserv. Biol. 16, 129–136 (2002).

    Google Scholar 

  • 40.

    Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H. & Bustamante, C. D. Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet. 5, e1000695 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Nyman, T. et al. Demographic histories and genetic diversities of Fennoscandian marine and landlocked ringed seal subspecies. Ecol. Evol. 4, 3420–3434 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Chikhi, L., Sousa, V. C., Luisi, P., Goossens, B. & Beaumont, M. A. The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186, 983–995 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Mackintosh, A. et al. The determinants of genetic diversity in butterflies. Nat. Commun. 10, 3466 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 44.

    Wright, S. Size of population and breeding structure in relation to evolution. Science 87, 430–431 (1938).

    Google Scholar 

  • 45.

    Slatkin, M. Gene genealogies within mutant allelic classes. Genetics 143, 579–587 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Lancaster, M. L., Gemmell, N. J., Negro, S., Goldsworthy, S. & Sunnucks, P. Ménage à trois on Macquarie Island: hybridization among three species of fur seal (Arctocephalus spp.) following historical population extinction. Mol. Ecol. 15, 3681–3692 (2006).

    CAS  PubMed  Google Scholar 

  • 47.

    Akcakaya, H. R. et al. Making consistent IUCN classifications under uncertainty. Conserv. Biol. 14, 1001–1013 (2000).

    Google Scholar 

  • 48.

    Higdon, J. W., Bininda-Emonds, O. R. P., Beck, R. M. D. & Ferguson, S. H. Phylogeny and divergence of the pinnipeds (Carnivora: Mammalia) assessed using a multigene dataset. BMC Evol. Biol. 7, 216 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    de Oliveira, L. R. & Brownell, R. L. Taxonomic status of two subspecies of South American fur seals: Arctocephalus australis australis vs. A. a. gracilis. Mar. Mammal Sci. 30, 1258–1263 (2014).

    Google Scholar 

  • 50.

    Shafer, A. B. A. et al. Bioinformatic processing of RAD-seq data dramatically impacts downstream population genetic inference. Methods Ecol. Evol. 8, 907–917 (2017).

    Google Scholar 

  • 51.

    Brelsford, A., Dufresnes, C. & Perrin, N. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity 116, 177–181 (2016).

    CAS  PubMed  Google Scholar 

  • 52.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011).

    Google Scholar 

  • 53.

    Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).

    CAS  PubMed  Google Scholar 

  • 55.

    Nadeau, N. J. et al. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato. Genome Res. 24, 1316–1333 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Foote, A. D. et al. Convergent evolution of the genomes of marine mammals. Nat. Genet. 47, 272–275 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Humble, E. et al. RAD sequencing and a hybrid Antarctic fur seal genome assembly reveal rapidly decaying linkage disequilibrium, global population structure and evidence for inbreeding. G3 (Bethesda) 8, 2709–2722 (2018).

    CAS  Google Scholar 

  • 58.

    Lunter, G. & Goodson, M. Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res. 21, 936–939 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinform. 15, 356 (2014).

    Google Scholar 

  • 60.

    Harris, R. S. Improved Pairwise Alignment of Genomic DNA (The Pennsylvania State Univ., 2007).

  • 61.

    Fumagalli, M., Vieira, F. G., Linderoth, T. & Nielsen, R. ngsTools: methods for population genetics analyses from next-generation sequencing data. Bioinformatics 30, 1486–1487 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Fumagalli, M. et al. Quantifying population genetic differentiation from next-generation sequencing data. Genetics 195, 979–992 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 63.

    Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl Acad. Sci. USA 76, 5269–5273 (1979).

    CAS  PubMed  Google Scholar 

  • 64.

    Watterson, G. A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7, 256–276 (1975).

    CAS  Google Scholar 

  • 65.

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 66.

    Hudson, R. R., Slatkin, M. & Maddison, W. P. Estimation of levels of gene flow from DNA sequence data. Genetics 132, 583 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Ranwez, V. et al. OrthoMaM: a database of orthologous genomic markers for placental mammal phylogenetics. BMC Evol. Biol. 7, 241 (2007).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Ranwez, V., Harispe, S., Delsuc, F. & Douzery, E. J. P. MACSE: multiple alignment of coding sequences accounting for frameshifts and stop codons. PLoS ONE 6, e22594 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Di Franco, A., Poujol, R., Baurain, D. & Philippe, H. Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMC Evol. Biol. 19, 21 (2019).

  • 70.

    Romiguier, J. et al. Fast and robust characterization of time-heterogeneous sequence evolutionary processes using substitution mapping. PLoS ONE 7, e33852 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 71.

    Guéguen, L. et al. Bio++: efficient extensible libraries and tools for computational molecular evolution. Mol. Biol. Evol. 30, 1745–1750 (2013).

    PubMed  Google Scholar 

  • 72.

    Figuet, E. et al. Life history traits, protein evolution, and the nearly neutral theory in amniotes. Mol. Biol. Evol. 33, 1517–1527 (2016).

    CAS  PubMed  Google Scholar 

  • 73.

    Botero-Castro, F., Figuet, E., Tilak, M.-K., Nabholz, B. & Galtier, N. Avian genomes revisited: hidden genes uncovered and the rates versus traits paradox in birds. Mol. Biol. Evol. 34, 3123–3131 (2017).

    CAS  PubMed  Google Scholar 

  • 74.

    The IUCN Red List of Threatened Species. Version 2017-3 (IUCN, 2017).

  • 75.

    Shafer, A. B. A., Gattepaille, L. M., Stewart, R. E. A. & Wolf, J. B. W. Demographic inferences using short-read genomic data in an approximate Bayesian computation framework: in silico evaluation of power, biases and proof of concept in Atlantic walrus. Mol. Ecol. 24, 328–345 (2015).

    PubMed  Google Scholar 

  • 76.

    Warmuth, V. M. & Ellegren, H. Genotype‐free estimation of allele frequencies reduces bias and improves demographic inference from RADSeq data. Mol. Ecol. Resour. 19, 586–596 (2019).

    CAS  PubMed  Google Scholar 

  • 77.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Li, H. et al. The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 79.

    Bearded Seal (Greenland Institute of Natural Resources, 2018); http://www.natur.gl/en/birds-and-mammals/marine-mammals/bearded-seal/

  • 80.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 81.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. R package version 3.1 (2017).


  • Source: Ecology - nature.com

    MIT startup wraps food in silk for better shelf life

    Unlocking the secrets of a plastic-eater