in

Pattern contrast influences wariness in naïve predators towards aposematic patterns

  • 1.

    Poulton, E.B. The Colors of Animals: Their Meaning and Use Especially Considered in the Case of Insects. London: Trübner & Co Ltd (1890).

  • 2.

    Rowe, C. & Halpin, C. G. Why are warning displays multimodal? Behav. Ecol. Sociobiol. 67, 1425–1439 (2013).

    Google Scholar 

  • 3.

    Mappes, J., Marples, N. M. & Endler, J. A. The complex business of survival by aposematism. Trends Evol. Ecol. 20, 598–603 (2005).

    Google Scholar 

  • 4.

    Brodie, E. D. III Differential avoidance of coral snake banded patterns by free-ranging avian redators in Costa Rica. Evolution 47, 227–235 (1993).

    PubMed  Google Scholar 

  • 5.

    Skelhorn, J., Halpin, C. G. & Rowe, C. Learning about aposematic prey. Behav. Ecol. 27, 955–964 (2016).

    Google Scholar 

  • 6.

    Smith, S. M. Innate recognition of coral snake pattern by a possible avian predator. Science 187, 759–760 (1975).

    ADS  CAS  PubMed  Google Scholar 

  • 7.

    Gittleman, J. L. & Harvey, P. H. Why are distasteful prey not cryptic? Nature 286, 149–150 (1980).

    ADS  Google Scholar 

  • 8.

    Roper, T. J. & Cook, S. E. Responses of chicks to brightly coloured insect prey. Behaviour 110, 276–293 (1989).

    Google Scholar 

  • 9.

    Roper, T. J. Responses of domestic chicks to artificially coloured insect prey: effects of previous experience and background colour. Anim. Behav. 39, 466–473 (1990).

    Google Scholar 

  • 10.

    Alatalo, R. V. & Mappes, J. Tracking the evolution of warning signals. Nature 382, 708–710 (1996).

    ADS  CAS  Google Scholar 

  • 11.

    Roper, T. J. & Marples, N. M. Colour preferences of domestic chicks in relation to food and water presentation. Appl. Anim. Behav. Sci. 54, 207–213 (1996).

    Google Scholar 

  • 12.

    Rowe, C. & Guilford, T. Hidden colour aversions in domestic chicks triggered by pyrazine odours of insect warning displays. Nature 383, 520–522 (1996).

    ADS  CAS  Google Scholar 

  • 13.

    Exnerová, A. et al. Importance of colour in the reaction of passerine predators to aposematic prey: experiments with mutants of Pyrrhocoris apterus (Heteroptera). Biol. J. Linn. Soc. 88, 143–153 (2006).

    Google Scholar 

  • 14.

    Hauglund, K., Hagen, S. B. & Lampe, H. M. Responses of domestic chicks (Gallus gallus domesticus) to multimodal aposematic signals. Behav. Ecol. 17, 392–398 (2006).

    Google Scholar 

  • 15.

    Halpin, C. G., Skelhorn, J. & Rowe, C. Being conspicuous and defended: selective benefits for the individual. Behav. Ecol. 19, 1012–1017 (2008a).

    Google Scholar 

  • 16.

    Halpin, C. G., Skelhorn, J. & Rowe, C. Naïve predators and selection for rare conspicuous defended prey: the initial evolution of aposematism revisited. Anim. Behav. 75, 771–781 (2008b).

    Google Scholar 

  • 17.

    Stevens, M., Mappes, J. & Sandre, S. L. The effect of predator appetite, prey warning coloration and luminance on predator foraging decisions. Behaviour 147, 1121–1143 (2010).

    Google Scholar 

  • 18.

    Stevens, M. & Ruxton, G. D. Linking the evolution and form of warning coloration in nature. Proc. R. Soc. B. 279, 417–426 (2012).

    PubMed  Google Scholar 

  • 19.

    Aronsson, M. & Gamberale-Stille, G. Domestic chicks primarily attend to colour, not pattern, when learning an aposematic coloration. Anim. Behav. 75, 417–423 (2008).

    Google Scholar 

  • 20.

    Osorio, D., Miklósi, Á. & Gonda, Z. Visual ecology and perception of coloration patterns by domestic chicks. Evol. Ecol. 13, 673–689 (1999).

    Google Scholar 

  • 21.

    Jones, C. D. & Osorio, D. Discrimination of oriented visual textures by poultry chicks. Vis. Res. 44, 83–89 (2004).

    CAS  PubMed  Google Scholar 

  • 22.

    Cook, R. G. & Wixted, J. T. Same–different texture discrimination in pigeons: Testing competing models of discrimination and stimulus integration. J. Exp. Psychol.: Anim. Behav. Proc. 23, 401–416 (1997).

    CAS  Google Scholar 

  • 23.

    Troje, N. F., Huber, L., Loidolt, M., Aust, U. & Fieder, M. Categorical learning in pigeons: the role of texture and shape in complex static stimuli. Vis. Res. 39, 353–366 (1999).

    CAS  PubMed  Google Scholar 

  • 24.

    Guilford, T. The evolution of aposematism. In: Evans, D. L. & Schmidt J. O. (eds). Insect defences: adaptive mechanisms and strategies of prey and predators. Albany, NY: State of New York Press (1990).

  • 25.

    Rowe, C. & Guilford, T. The evolution of multimodal warning displays. Evol. Ecol. 13, 655–671 (1999).

    Google Scholar 

  • 26.

    Osorio, D., Jones, C. D. & Vorobyev, M. Accurate memory for colour but not pattern contrast in chicks. Curr. Biol. 9, 199–202 (1999).

    CAS  PubMed  Google Scholar 

  • 27.

    Zylinksi, S. & Osorio, D. Visual contrast and color in rapid learning of novel patterns by chicks. J. Exp. Biol. 216, 4184–4189 (2013).

    Google Scholar 

  • 28.

    Prudic, K. L., Skemp, A. K. & Papaj, D. R. Aposematic coloration, luminance contrast, and the benefits of conspicuousness. Behav. Ecol. 18, 41–46 (2007).

    Google Scholar 

  • 29.

    Kauppinen, J. & Mappes, J. Why are wasps so intimidating: field experiments on hunting dragonflies (Odonata: Aeshna grandis). Anim. Behav. 66, 505–511 (2003).

    Google Scholar 

  • 30.

    Preißler, K. & Pröhl, H. The effects of background coloration and dark spots on the risk of predation in poison frog models. Evol. Ecol. 31, 683–694 (2017).

    Google Scholar 

  • 31.

    Schuler, W. & Hesse, E. On the function of warning coloration: a black and yellow pattern inhibits prey-attack by naive domestic chicks. Behav. Ecol. Sociobiol. 16, 249–255 (1985).

    Google Scholar 

  • 32.

    Bowdish, T. I. & Bultman, T. L. Visual cues used by mantids in learning aversion to aposematically colored prey. Am. Midl. Nat 129, 215–222 (1993).

    Google Scholar 

  • 33.

    Rashed, A., Beatty, C. D., Forbes, M. R. & Sherratt, T. N. Prey selection by dragonflies in relation to prey size and wasp-like colours and patterns. Anim. Behav. 70, 1195–1202 (2005).

    Google Scholar 

  • 34.

    Aronsson, M. & Gamberale-Stille, G. Importance of internal pattern contrast and contrast against the background in aposematic signals. Behav. Ecol. 20, 1356–1362 (2009).

    Google Scholar 

  • 35.

    Halpin, C. G., Skelhorn, J., Rowe, C., Ruxton, G. D. & Higginson, A. D. The impact of detoxification costs and predation risk on foraging: implications for mimicry dynamics. PLoS One 12, e0169043 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Barrio, R. A., Varea, C., Aragon, J. L. & Maini, P. K. A two-dimensional numerical study of spatial pattern formation in interacting Turing systems. Bull. Math. Biol. 61, 483–505 (1999).

    CAS  PubMed  MATH  Google Scholar 

  • 37.

    Turing, A. M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. B 237, 37–72 (1952).

    ADS  MathSciNet  MATH  Google Scholar 

  • 38.

    Kondo, S. & Miura, T. Reaction-diffusion Model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  • 39.

    Beldade, P. & Brakefield, P. M. The genetics and evo–devo of butterfly wing patterns. Nat. Rev. Gen. 3, 442–452 (2002).

    CAS  Google Scholar 

  • 40.

    Marples, N. M., Brakefield, P. M. & Cowie, R. J. Differences between the 7-spot and 2-spot ladybird beetles (Coccinellidae) in their toxic effects on a bird predator. Ecol. Ent. 14, 79–84 (1989).

    Google Scholar 

  • 41.

    Sherratt, T. N. The optimal sampling strategy for unfamiliar prey. Evolution 65, 2014–2025 (2011).

    PubMed  Google Scholar 

  • 42.

    Skelhorn, J. Bitter tastes can influence birds’ dietary expansion strategies. Behav. Ecol. 27, 725–730 (2016).

    Google Scholar 

  • 43.

    Lindström, L., Rowe, C. & Guiford, T. Pyrazine odour makes visually conspicuous prey aversive. Proc. R. Soc. B. 268, 159–162 (2001).

    PubMed  Google Scholar 

  • 44.

    Sillén-Tullberg, B. The significance of coloration per se, independent of background, for predator avoidance of aposematic prey. Anim. Behav. 33, 1382–1384 (1985).

    Google Scholar 

  • 45.

    Mastrota, N. F. & Mench, J. A. Colour avoidance in northern bobwhites: effects of age, sex and previous experience. Anim. Behav. 50, 519–526 (1995).

    Google Scholar 

  • 46.

    Rowe, C. & Skelhorn, J. Colour biases are a question of taste. Anim. Behav. 69, 587–594 (2005).

    Google Scholar 

  • 47.

    Skelhorn, J., Griksaitis, D. & Rowe, C. Colour biases are more than a question of taste. Anim. Behav. 75, 827–835 (2008).

    Google Scholar 

  • 48.

    Stevens, M. et al. Field experiments on the effectiveness of ‘eyespots’ as predator deterrents. Anim. Behav. 74, 1215–1227 (2007).

    Google Scholar 

  • 49.

    Marples, N. M. & Kelly, D. J. Neophobia and dietary conservatism: two distinct processes. Evol. Ecol. 13, 641–653 (1999).

    Google Scholar 

  • 50.

    Marples, N. M., Roper, T. J. & Harper, D. G. C. Responses of wild birds to novel prey: evidence of dietary conservatism. Oikos 83, 161–165 (1998).

    Google Scholar 

  • 51.

    Speed, M. P. Can receiver psychology explain the evolution of aposematism? Anim. Behav. 61, 205–216 (2001).

    PubMed  Google Scholar 

  • 52.

    Thomas, R. J., Marples, N. M., Cuthill, I. C., Takahashi, M. & Gibson, E. A. Dietary conservatism may facilitate the initial evolution of aposematism. Oikos 101, 458–466 (2003).

    Google Scholar 

  • 53.

    Lee, T. J., Marples, N. M. & Speed, M. P. Can dietary conservatism explain the primary evolution of aposematism? Anim. Behav. 79, 63–74 (2010).

    Google Scholar 

  • 54.

    Cuthill, I. C., Stevens, M., Sheppard, J., Maddocks, T., Párraga, C. A. & Troscianko, T. S. Disruptive coloration and background pattern matching. Nature 434, 72–74 (2005).

    ADS  CAS  PubMed  Google Scholar 

  • 55.

    Stevens, M. & Cuthill, I. C. Disruptive coloration, crypsis and edge detection in early visual processing. Proc. R. Soc. B. 273, 2141–2147 (2006).

    PubMed  Google Scholar 

  • 56.

    Fraser, S., Callahan, A., Klassen, D. & Sherratt, T. N. Empirical tests of the role of disruptive coloration in reducing detectability. Proc. R. Soc. B 274, 1325–1331 (2007).

    PubMed  Google Scholar 

  • 57.

    Aronsson, M. & Gamberale-Stille, G. Evidence of signaling benefits to contrasting internal color boundaries in warning coloration. Behav. Ecol. 24, 349–354 (2012).

    Google Scholar 

  • 58.

    Green, N. F., Urquhart, H. H., van den Berg, C. P., Marshall, N. J. & Cheney, K. L. Pattern edges improve predator learning of aposematic signals. Behav. Ecol. 29, 1481–1486 (2018).

    Google Scholar 

  • 59.

    Gambaralle-Stille, G. & Tullberg, B. S. Fruit or aposematic insect? Context-dependent colour preferences in domestic chicks. Proc. R. Soc. B. 268, 2525–2529 (2001).

    Google Scholar 

  • 60.

    Switkes, E. & Crognale, M. A. Comparison of color and luminance contrast: apples versus oranges? Vis. Res. 39, 1823–1831 (1999).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    MIT startup wraps food in silk for better shelf life

    Unlocking the secrets of a plastic-eater