in

Predictions of potential geographical distribution of Diaphorina citri (Kuwayama) in China under climate change scenarios

  • 1.

    Koundinya, A. V. V., Kumar, P. P., Ashadevi, R., Hegde, V. & Kumar, P. A. Adaptation and mitigation of climate change in vegetable cultivation: a review. Journal of Water and Climate Change 9, 17–36 (2018).

    Google Scholar 

  • 2.

    Guo, J. P. Advances in impacts of climate change on agricultural production in China. Journal of Applied Meteorological Science 26, 1–11 (2015).

    ADS  Google Scholar 

  • 3.

    Zou, J., Teng, F. & Fu, S. The latest progress in socioeconomic assessment of the mitigation of climate change-review of the IPCC Fifth Assessment WGIII Report. Advances in Climate Change Research 10, 313–322 (2015).

    ADS  Google Scholar 

  • 4.

    Zhou, G. S. Research prospect on impact of climate change on agricultural production in China. Meteorological and Environmental Sciences 38, 80–94 (2015).

    Google Scholar 

  • 5.

    Sun, H., He, M. P. & Hu, M. C. Impact of global climatic warming on agricultural production in China. Chinese Journal of Agricultural Resources and Regional Planning 36, 51–57 (2015).

    Google Scholar 

  • 6.

    Reineke, A. & Thiéry, D. Grapevine insect pests and their natural enemies in the age of global warming. Journal of Pest Science 89, 313–328 (2016).

    Google Scholar 

  • 7.

    Huo, Z. G. et al. Impacts of climate warming on crop diseases and pests in China. Scientia agricultura sinica 45, 1926–1934 (2012).

    Google Scholar 

  • 8.

    Shimin, G. et al. Climate change favours a destructive agricultural pest in temperate regions: late spring cold matters. Journal of Pest Science 91, 1191–1198 (2018).

    Google Scholar 

  • 9.

    Sun, L. Q., Yin, Y. P., Wang, F., Wu, X. F. & Wang, Z. K. Correlation of Candidatus Liberibacter asiaticus and the Endophytic Community in Diaphorina citri. Scientia Agricultura Sinica 47, 2151–2161 (2014).

    CAS  Google Scholar 

  • 10.

    Yu, J. H. et al. The biological research progress and prevention of Asian citrus psyllid. Plant Quarantine 32, 8–13 (2018).

    Google Scholar 

  • 11.

    Manjunath, K. L., Halbert, S. E., Ramadugu, C., Webb, S. & Lee, R. F. Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology 98, 387–396 (2008).

    CAS  PubMed  Google Scholar 

  • 12.

    Fan, J., Chen, C., Brlansky, R. H., Gmitter, F. G. Jr & Li, Z. G. Changes in carbohydrate metabolism in citrus sinensis infected with ‘Candidatus Liberibacter asiaticus’. Plant Pathology 59, 1037–1043 (2010).

    CAS  Google Scholar 

  • 13.

    Wang, X. F., Zhou, C. Y., Deng, X. L., Su, H. N. & Chen, J. C. Molecular characterization of a mosaic locus in the genome of ‘Candidatus Liberibacter asiaticus’. BMC Microbiology 12, 18 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Giuseppe, E. et al. A review on Trioza erytreae (African citrus psyllid), now in mainland Europe, and its potential risk as vector of huanglongbing (HLB) in citrus. Journal of Pest Science 90, 1–17 (2017).

    Google Scholar 

  • 15.

    Deng, X. X. et al. Retrospection and prospect of fruit breeding for last four decades in China. Journal of Fruit Science 36, 514–520 (2019).

    Google Scholar 

  • 16.

    Wan, S., Xiao, W. Y. & Huang, J. H. Research progress on detection technology of citrus Huanglongbing. Journal of Zhongkai University of Agriculture and Engineering 31, 59–65 (2018).

    Google Scholar 

  • 17.

    Cheng, C. Z. et al. Research progress on citrus huanglongbing disease. Acta Horticulturae Sinica 40, 1656–1668 (2013).

    CAS  Google Scholar 

  • 18.

    Fan, G. C. et al. Thirty years of research on citrus Huanglongbing in China. Fujian Journal of Agricultural Sciences 24, 183–190 (2009).

    Google Scholar 

  • 19.

    Chen, L. F., Xu, Z. X. & Wang, J. G. Research progress on Diaphorina citri. Guizhou Agricultural Sciences 44, 42–47 (2016).

    CAS  Google Scholar 

  • 20.

    Li, Z. H. & Qin, Y. J. Review on the quantitative assessment models for pest risk analysis and their comparison. Plant protection 44, 134–145 (2018).

    Google Scholar 

  • 21.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Google Scholar 

  • 22.

    Hu, S. F. et al. Projecting distribution of the overwintering population of Sogatella furcifera (Hemiptera: Delphacidae), in Yunnan, China with analysis on key influencing climatic factors. Journal of Insect Science 15, 148 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Srivastava, V., Griess, V. C. & Keena, M. A. Assessing the potential distribution of Asian gypsy moth in Canada: A comparison of two methodological approaches. Scientific reports 10, 22 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Kumar, S., Graham, J., West, A. M. & Evangelista, P. H. Using district-level occurrences in MaxEnt for predicting the invasion potential of an exotic insect pest in India. Computers and Electronics in Agriculture 103, 55–62 (2014).

    Google Scholar 

  • 25.

    Ruan, C. Q., Chen, J. L., Liu, B., Duan, Y. P. & Xia, Y. L. Morphology and behavior of Asian citrus psyllid, Diaphorina citri Kuwayama. Chinese Agricultural Science Bulletin 28, 186–190 (2012).

    Google Scholar 

  • 26.

    Onagbola, E. O., Meyer, W. L., Boina, D. R. & Stelinski, L. L. Morphological characterization of the antennal sensilla of the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae), with reference to their probable functions. Micron 39, 1184–1191 (2008).

    PubMed  Google Scholar 

  • 27.

    Pelz-Stelinski, K. S., Brlansky, R. H., Ebert, T. A. & Rogers, M. E. Transmission parameters for Candidatus Liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae). Journal of Economic Entomology 103, 1531–1541 (2010).

    CAS  PubMed  Google Scholar 

  • 28.

    Inoue, H. et al. Enhanced proliferation and efficient transmission of Candidatus Liberibacter asiaticus by adult Diaphorina citri after acquisition feeding in the nymphal stage. Annals of Applied Biology 155, 29–36 (2009).

    Google Scholar 

  • 29.

    Killiny, N. et al. Metabolomic analyses of the haemolymph of the Asian citrus psyllid Diaphorina citri, the vector of huanglongbing. Physiological Entomology 42, 134–145 (2017).

    CAS  Google Scholar 

  • 30.

    Manjunath, K. L., Halbert, S. E., Ramadugu, C., Webb, S. & Lee, R. F. Detection of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and its importance in the management of citrus huanglongbing in Florida. Phytopathology 98, 387–396 (2008).

    CAS  PubMed  Google Scholar 

  • 31.

    Wang, Q. Z., Liu, Y. M., Li, S. M., Zhao, Y. & Wang, W. Chemical composition of essential oil of the invasive plant Praxelis clematidea and its repellence and lethality to Diaphorina citri. Chinese. Journal of Applied Entomology 55, 117–125 (2018).

    Google Scholar 

  • 32.

    Wang, S. Q., Xiao, Y. L. & Zhang, H. Y. Studies of the past, current and future potential distributions of Diaphorina citri Kuwayama (Homoptera: Psyllidae) in China. Chinese. Journal of Applied Entomology 52, 1140–1148 (2015).

    Google Scholar 

  • 33.

    Phillips. A brief tutorial on MaxEnt. Available from: http://biodiversityinformatics.amnh.org/open_source/maxent/ (2017).

  • 34.

    Peterson, A. T., Papes, M. & Eaton, M. P. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30, 550–560 (2007).

    Google Scholar 

  • 35.

    Atwal, A. S., Chaudhary, J. P. & Ramzan, M. Studies on the development and field population of citrus psylla, Diaphorina citri kuwayama (Psyllidae: Homoptera). Journal of Research – Punjab Agricultural University 7, 333–338 (1970).

    Google Scholar 

  • 36.

    Huang, Z. Y. et al. Supercooling points and freezing points of Diaphorina citri Kuwayama and Cacopsylla citrisuga Yang & Li. Journal of Environmental Entomology 37, 1–7 (2015).

    Google Scholar 

  • 37.

    Hall, D. G., Wenninger, E. J. & Hentz, M. G. Temperature studies with the Asian citrus psyllid, Diaphorina citri: Cold hardiness and temperature thresholds for oviposition. Journal of Insect Science 11, 83 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Bai, X. J. et al. Investigation on the cold tolerance of Asian citrus psyllid. South China Fruits 37, 22–24 (2008).

    Google Scholar 

  • 39.

    Wang, R. L. et al. Predicting the potential distribution of the Asian citrus psyllid, Diaphorina citri (Kuwayama), in China using the MaxEnt model. Peer J 7, e7323 (2019).

    PubMed  Google Scholar 

  • 40.

    Monteith, J. L. Agricultural meteorology: evolution and application. Agricultural and Forest Meteorology 103, 5–9 (2000).

    ADS  Google Scholar 

  • 41.

    Choi, W. I. & Park, Y. S. Monitoring, assessment and management of forest insect pests and diseases. Forests 10, 865 (2019).

  • 42.

    Qin, J. L., Yang, X. H., Yang, Z. W., Luo, J. T. & Lei, X. F. New technology for using meteorological information in forest insect pest forecast and warning systems. Pest management science 73, 2509–2518 (2017).

    CAS  PubMed  Google Scholar 

  • 43.

    Dossi, F. C. A., Da Silva, E. P. & Consoli, F. L. Shifting the balance: Heat stress challenges the symbiotic interactions of the Asian citrus psyllid, Diaphorina citri (Hemiptera, Liviidae). The Biological Bulletin 235, 195–203 (2018).

    PubMed  Google Scholar 

  • 44.

    Jiang, H. Y. et al. Research advances on the origin, distribution and dispersal of the Asian citrus psyllid (Diaphorina citri Kuwayama). Journal of Environmental Entomology 40, 1014–1020 (2018).

    Google Scholar 

  • 45.

    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecology Applications 21, 335–342 (2011).

    Google Scholar 

  • 46.

    Warren, D. L., Wright, A. N., Seifert, S. N. & Shaffer, H. B. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity and Distributions 20, 334–343 (2014).

    Google Scholar 

  • 47.

    Narouei-Khandan, H. A., Halbert, S. E., Worner, S. P. & van Bruggen, A. H. C. Global climate suitability of citrus huanglongbing and its vector, the Asian citrus psyllid, using two correlative species distribution modeling approaches, with emphasis on the USA. European Journal of Plant Pathology 144, 655–670 (2016).

    Google Scholar 

  • 48.

    Grafton-Cardwell, E. E., Stelinski, L. L. & Stansly, P. A. Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. Annual Review of Entomology 58, 413–432 (2013).

    CAS  PubMed  Google Scholar 

  • 49.

    Aurambout, J. P., Finlay, K. J., Luck, J. & Beattie, G. A. C. A concept model to estimate the potential distribution of the Asiatic citrus psyllid (Diaphorina citri Kuwayama) in Australia under climate change—A means for assessing biosecurity risk. Ecological Modelling 220, 2512–2524 (2009).

    Google Scholar 

  • 50.

    Wang, R. L. et al. A simulation study of the geographical distribution of Actinidia arguta in China. Polish Journal of Environmental Studies 29, 1889–1898 (2020).

    Google Scholar 

  • 51.

    Yang, Y. P. et al. Distribution, biology, ecology and control of the psyllid Diaphorina citri Kuwayama, a major pest of citrus: a status report for China. International Journal of Pest Management 52, 343–352 (2006).

    Google Scholar 

  • 52.

    López-Collado, J., López-Arroyo, J. I., Robles-García, P. L. & Márquez-Santos, M. Geographic distribution of habitat, development, and population growth rates of the Asian citrus psyllid, Diaphorina citri, in Mexico. Journal of Insect Science 13, 1–17 (2013).

    Google Scholar 

  • 53.

    Kuang, F. et al. Effects of high temperature on mortality and activity behavior of Diaphorina citri Kuwayama. Journal of Southern Agriculture 48, 1600–1604 (2017).

    Google Scholar 

  • 54.

    Worthington, T. A., Zhang, T., Logue, D. R., Mittelstet, A. R. & Brewer, S. K. Landscape and flow metrics affecting the distribution of a federally-threatened fish: improving management, model fit, and model transferability. Ecological Modelling 342, 1–18 (2016).

    Google Scholar 

  • 55.

    Halbert, S. E. & Manjunanth, K. L. Asian citrus psyllids (Sternorrhycha: Psyllidae) and greening disease of citrus: A literature review and assessment of risk in Florida. Florida Entomologist 87, 330–353 (2004).

    Google Scholar 

  • 56.

    Wang, Y. J. et al. Genetic diversity of Diaphorina citri and its endosymbionts across east and south-east Asia. Pest Management Science 73, 2090–2099 (2017).

    CAS  PubMed  Google Scholar 

  • 57.

    Jiang, D., Chen, S., Hao, M. M., Fu, J. Y. & Ding, F. Y. Mapping the potential global codling moth (Cydia pomonella L.) distribution based on a machine learning method. Scientific Reports 8, 13093 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 59.

    Butler, C. J., Stanila, B. D., Iverson, J. B., Stone, P. A. & Byson, M. Projected changes in climatic suitability for Kinosternon turtles by 2050 and 2070. Ecology and Evolution 6, 1–16 (2016).

    Google Scholar 

  • 60.

    Swamy, P. S. & Rameshprabu, N. Prediction of environmental suitability for invasion of Mikania micrantha in India by species distribution modelling. Journal of Environmental Biology 36, 565–570 (2015).

    Google Scholar 

  • 61.

    Wang, R. L. et al. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China. Plos One 13, e0192153 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Han, Y. Y., Wang, Y., Xiang, Y. & Ye, J. R. Prediction of potential distribution of Bursaphelenchus xylophilus in China based on Maxent ecological niche model. Journal of Nanjing Forestry University 39, 6–10 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    MIT startup wraps food in silk for better shelf life

    Unlocking the secrets of a plastic-eater