Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: vulnerability from climate change and population growth. Science. 289, 284–288, 8647 [pii] (2000).
Lee, S.-W., Hwang, S.-J., Lee, S.-B., Hwang, H.-S. & Sung, H.-C. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape and Urban Planning. 92, 80–89, https://doi.org/10.1016/j.landurbplan.2009.02.008 (2009).
Logue, J. B., Findlay, S. E. & Comte, J. Editorial: Microbial Responses to Environmental Changes. Front Microbiol. 6, 1364 (2015).
Allison, S. D. & Martiny, J. B. Colloquium paper: resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 105 Suppl 1, 11512–11519, 10.1073/pnas.0801925105 0801925105 [pii] (2008).
Martiny, J. B., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: A phylogenetic perspective. Science. 350, aac9323, 10.1126/science.aac9323 aac9323 [pii] 350/6261/aac9323 [pii] (2015).
Donovan, E., Unice, K., Roberts, J. D., Harris, M. & Finley, B. Risk of gastrointestinal disease associated with exposure to pathogens in the water of the Lower Passaic River. Appl Environ Microbiol. 74, 994–1003, https://doi.org/10.1128/AEM.00601-07 (2008).
Singh, K. P., Malik, A., Mohan, D. & Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)–a case study. Water Res. 38, 3980–3992, https://doi.org/10.1016/j.watres.2004.06.011 (2004).
S, H. et al. Vol. 20(3-4) 157–167 (2013).
Liu, J. & Diamond, J. China’s environment in a globalizing world. Nature. 435, 1179–1186, https://doi.org/10.1038/4351179a (2005).
F, O. C., López, Duverne, L. B., Mazieres, J. O. & Salibián, A. Vol. 6 (2013).
Nader, G. M., Sanchez Proaño, P. V. & Cicerone, D. S. Water quality assessment of a polluted urban river. International Journal of Environment and Health. 6, 276–289 (2013).
Cunha, D. G. et al. On site flotation for recovering polluted aquatic systems: is it a feasible solution for a Brazilian urban river? Water Sci Technol. 62, 1603–1613, https://doi.org/10.2166/wst.2010.450 (2010).
Cunha, D. G. et al. Contiguous urban rivers should not be necessarily submitted to the same management plan: the case of Tiete and Pinheiros Rivers (Sao Paulo-Brazil). An Acad Bras Cienc. 83, 1465–1480, S0001-37652011000400032 [pii] (2011).
Braga, B. P. F. The Management of Urban Water Conflicts in the Metropolitan Region of São Paulo. Water International. 25, 208–213, https://doi.org/10.1080/02508060008686820 (2000).
Campos, V., Domingos, J. M. F., Anjos, D. N. D. & Lira, V. S. Study of fluvial water treatability using gamma-polyglutamic acid based biopolymer coagulant. An Acad Bras Cienc. 91, e20190051, S0001-37652019000500903 [pii] 10.1590/0001-3765201920190051 (2019).
Morihama, A. C. et al. Integrated solutions for urban runoff pollution control in Brazilian metropolitan regions. Water Sci Technol. 66, 704–711, https://doi.org/10.2166/wst.2012.215 (2012).
Rocha, P. S. et al. Sediment-contact fish embryo toxicity assay with Danio rerio to assess particle-bound pollutants in the Tiete River Basin (Sao Paulo, Brazil). Ecotoxicol Environ Saf. 74, 1951–1959, 10.1016/j.ecoenv.2011.07.009 S0147-6513(11)00195-3 [pii] (2011).
Suares Rocha, P. et al. Changes in toxicity and dioxin-like activity of sediments from the Tiete River (Sao Paulo, Brazil). Ecotoxicol Environ Saf. 73, 550–558, 10.1016/j.ecoenv.2009.12.017 S0147-6513(09)00294-2 [pii] (2010).
Bracco, J. E., Dalbon, M., Marinotti, O. & Barata, J. M. [Resistance to organophosphorous and carbamates insecticides in a population of Culex quinquefasciatus]. Rev Saude Publica. 31, 182–183, https://doi.org/10.1590/s0034-89101997000200013 (1997).
Kuang, J. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 10, 1527–1539, 10.1038/ismej.2015.201 ismej2015201 [pii] (2016).
Richa, K. et al. Distribution, Community Composition, and Potential Metabolic Activity of Bacterioplankton in an Urbanized Mediterranean Sea Coastal Zone. Appl Environ Microbiol. 83, e00494-17 [pii] 10.1128/AEM.00494-17 AEM.00494-17 [pii] (2017).
Wu, H. et al. Bacterial community composition and function shift with the aggravation of water quality in a heavily polluted river. J Environ Manage. 237, 433–441, S0301-4797(19)30258-0 [pii] 10.1016/j.jenvman.2019.02.101 (2019).
Bier, R. L., Voss, K. A. & Bernhardt, E. S. Bacterial community responses to a gradient of alkaline mountaintop mine drainage in Central Appalachian streams. ISME J. 9, 1378–1390, 10.1038/ismej.2014.222 ismej2014222 [pii] (2015).
Peter, H. & Sommaruga, R. Shifts in diversity and function of lake bacterial communities upon glacier retreat. ISME J. 10, 1545–1554, 10.1038/ismej.2015.245 ismej2015245 [pii] (2016).
Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579, 10.1038/ismej.2011.41 ismej201141 [pii] (2011).
Pereira da Fonseca, T. A., Pessoa, R., Felix, A. C. & Sanabani, S. S. Diversity of Bacterial Communities on Four Frequently Used Surfaces in a Large Brazilian Teaching Hospital. Int J Environ Res Public Health. 13, 152, 10.3390/ijerph13020152 E152 [pii] ijerph13020152 [pii] (2016).
Pereira da Fonseca, T. A., Pessoa, R. & Sanabani, S. S. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces. Int J Environ Res Public Health. 12, 13276–13288, 10.3390/ijerph121013276 ijerph121013276 [pii] (2015).
Yoon, S. H. et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 67, 1613–1617, https://doi.org/10.1099/ijsem.0.001755 (2017).
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60, 10.1186/gb-2011-12-6-r60 gb-2011-12-6-r60 [pii] (2011).
Kanehisa, M. et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42, D199–205, 10.1093/nar/gkt1076 gkt1076 [pii] (2014).
Nascimento, A. L. et al. Sewage Sludge Microbial Structures and Relations to Their Sources, Treatments, and Chemical Attributes. Front Microbiol. 9, 1462, https://doi.org/10.3389/fmicb.2018.01462 (2018).
Gao, P. et al. Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China. Appl Microbiol Biotechnol. 100, 4663–4673, 10.1007/s00253-016-7307-0 10.1007/s00253-016-7307-0 [pii] (2016).
Shu, D., He, Y., Yue, H. & Wang, Q. Microbial structures and community functions of anaerobic sludge in six full-scale wastewater treatment plants as revealed by 454 high-throughput pyrosequencing. Bioresour Technol. 186, 163–172, S0960-8524(15)00404-6 [pii] 10.1016/j.biortech.2015.03.072 (2015).
Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 75, 14–49, 10.1128/MMBR.00028-10 75/1/14 [pii] (2011).
Ye, W. et al. The vertical distribution of bacterial and archaeal communities in the water and sediment of Lake Taihu. FEMS Microbiol Ecol. 70, 107–120, 10.1111/j.1574-6941.2009.00761.x FEM761 [pii] (2009).
Jiang, H. et al. Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol. 72, 3832–3845, 72/6/3832 [pii] 10.1128/AEM.02869-05 (2006).
Song, H., Li, Z., Du, B., Wang, G. & Ding, Y. Bacterial communities in sediments of the shallow Lake Dongping in China. J Appl Microbiol. 112, 79–89, 10.1111/j.1365-2672.2011.05187.x (2012).
Clauwaert, P. et al. Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol. 79, 901–913, 10.1007/s00253-008-1522-2 (2008).
Lovley, D. R. Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol. 17, 327–332, S0958-1669(06)00058-9 [pii] 10.1016/j.copbio.2006.04.006 (2006).
Takai, K. et al. Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria. Appl Environ Microbiol. 71, 7310–7320, 71/11/7310 [pii] 10.1128/AEM.71.11.7310-7320.2005 (2005).
Collado, L., Inza, I., Guarro, J. & Figueras, M. J. Presence of Arcobacter spp. in environmental waters correlates with high levels of fecal pollution. Environ Microbiol. 10, 1635–1640, 10.1111/j.1462-2920.2007.01555.x EMI1555 [pii] (2008).
Perez-Cataluna, A., Salas-Masso, N. & Figueras, M. J. Arcobacter canalis sp. nov., isolated from a water canal contaminated with urban sewage. Int J Syst Evol Microbiol. 68, 1258–1264, https://doi.org/10.1099/ijsem.0.002662 (2018).
Figueras, M. J. et al. A severe case of persistent diarrhoea associated with Arcobacter cryaerophilus but attributed to Campylobacter sp. and a review of the clinical incidence of Arcobacter spp. New Microbes New Infect. 2, 31–37, https://doi.org/10.1002/2052-2975.35 (2014).
Van den Abeele, A. M., Vogelaers, D., Van Hende, J. & Houf, K. Prevalence of Arcobacter species among humans, Belgium, 2008-2013. Emerg Infect Dis. 20, 1731–1734, https://doi.org/10.3201/eid2010.140433 (2014).
Duffy, L. L. & Fegan, N. Prevalence and concentration of Arcobacter spp. on Australian Beef Carcasses. J Food Prot. 75, 1479–1482, 10.4315/0362-028×.JFP-12-093 (2012).
Collado, L. & Figueras, M. J. Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin Microbiol Rev. 24, 174–192, 10.1128/CMR.00034-10 24/1/174 [pii] (2011).
Barboza, K. et al. First isolation report of Arcobacter cryaerophilus from a human diarrhea sample in Costa Rica. Rev Inst Med Trop Sao Paulo. 59, e72, S0036-46652017005000506 [pii] 10.1590/S1678-9946201759072 (2017).
McLellan, S. L., Huse, S. M., Mueller-Spitz, S. R., Andreishcheva, E. N. & Sogin, M. L. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol. 12, 378–392, 10.1111/j.1462-2920.2009.02075.x EMI2075 [pii] (2010).
Cai, L., Ju, F. & Zhang, T. Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl Microbiol Biotechnol. 98, 3317–3326, https://doi.org/10.1007/s00253-013-5402-z (2014).
Fisher, J. C., Levican, A., Figueras, M. J. & McLellan, S. L. Population dynamics and ecology of Arcobacter in sewage. Front Microbiol. 5, 525, https://doi.org/10.3389/fmicb.2014.00525 (2014).
McLellan, S. L. & Roguet, A. The unexpected habitat in sewer pipes for the propagation of microbial communities and their imprint on urban waters. Curr Opin Biotechnol. 57, 34–41, S0958-1669(18)30207-6 [pii] 10.1016/j.copbio.2018.12.010 (2019).
Millar, J. A. & Raghavan, R. Accumulation and expression of multiple antibiotic resistance genes in Arcobacter cryaerophilus that thrives in sewage. PeerJ. 5, e3269, 10.7717/peerj.3269 3269 [pii] (2017).
Jacquiod, S. et al. Deciphering conjugative plasmid permissiveness in wastewater microbiomes. Mol Ecol. 26, 3556–3571, https://doi.org/10.1111/mec.14138 (2017).
Douidah, L. et al. Presence and analysis of plasmids in human and animal associated arcobacter species. PLoS One. 9, e85487, 10.1371/journal.pone.0085487 PONE-D-13-35431 [pii] (2014).
Van Driessche, E. & Houf, K. Survival capacity in water of Arcobacter species under different temperature conditions. J Appl Microbiol. 105, 443–451, 10.1111/j.1365-2672.2008.03762.x JAM3762 [pii] (2008).
Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol. 69, 1548–1555, https://doi.org/10.1128/aem.69.3.1548-1555.2003 (2003).
W.F.M., R. The Family Geobacteraceae. In: Rosenberg, E., et al (eds) The Prokaryotes. Springer, Berlin, Heidelberg. (2014).
Holmes, D. E., Finneran, K. T., O’Neil, R. A. & Lovley, D. R. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl Environ Microbiol. 68, 2300–2306, https://doi.org/10.1128/aem.68.5.2300-2306.2002 (2002).
Lonergan, D. J. et al. Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol. 178, 2402–2408, https://doi.org/10.1128/jb.178.8.2402-2408.1996 (1996).
Lovley, D. R. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev. 55, 259–287 (1991).
Kim, T. G., Yun, J., Hong, S. H. & Cho, K. S. Effects of water temperature and backwashing on bacterial population and community in a biological activated carbon process at a water treatment plant. Appl Microbiol Biotechnol. 98, 1417–1427, https://doi.org/10.1007/s00253-013-5057-9 (2014).
Staley, C. et al. Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Sci Total Environ. 505, 435–445, 10.1016/j.scitotenv.2014.10.012 S0048-9697(14)01450-8 [pii] (2015).
Mitchell, J. G., Pearson, L. & Dillon, S. Clustering of marine bacteria in seawater enrichments. Appl Environ Microbiol. 62, 3716–3721 (1996).
Li, R. et al. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci Rep. 7, 5752, 10.1038/s41598-017-02516-3 10.1038/s41598-017-02516-3 [pii] (2017).
Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 7, 2061–2068, 10.1038/ismej.2013.102 ismej2013102 [pii] (2013).
Source: Ecology - nature.com