in

The propensity for re-triggered predation fear in a prey fish

  • 1.

    Zanette, L. Y. & Clinchy, M. In APA Handbook of Comparative Psychology Vol. 1 (ed. J. Call) 815–831 (APA Books, 2017).

  • 2.

    Crane, A. L., Brown, G. E., Chivers, D. P. & Ferrari, M. C. O. An ecological framework of neophobia: from cells to organisms to populations. Biol Rev 95, 218–231 (2020).

    Google Scholar 

  • 3.

    Zanette, L. Y., Hobbs, E. C., Witterick, L. E., MacDougall-Shackleton, S. A. & Clinchy, M. Predator-induced fear causes PTSD-like changes in the brains and behaviour of wild animals. Sci Rep 9, 1–10 (2019).

    Google Scholar 

  • 4.

    Adolphs, R. The biology of fear. Curr Biol 23, R79–R93 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Lima, S. L. Nonlethal effects in the ecology of predator-prey interactions – What are the ecological effects of anti-predator decision-making? Bioscience 48, 25–34 (1998).

    Google Scholar 

  • 6.

    Lima, S. L. & Dill, L. M. Behavioral decidsion made under the risk of predation – a review and prospectus. Can J Zool 68, 619–640 (1990).

    Google Scholar 

  • 7.

    Helfman, G. S. Threat-sensitive predator avoidance in damselfish-trumpetfish interactions. Behav Ecol Sociobiol 24, 47–58 (1989).

    Google Scholar 

  • 8.

    Papworth, S., Milner-Gulland, E. & Slocombe, K. Hunted woolly monkeys (Lagothrix poeppigii) show threat-sensitive responses to human presence. PloS One 8, e62000 (2013).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Crane, A. L. & Ferrari, M. C. O. Patterns of predator neophobia: a meta-analytic review. Proc Roy Soc B 284, 20170583 (2017).

    Google Scholar 

  • 10.

    Brown, G. E. et al. Personality and the retention of neophobic predator avoidance in wild caught Trinidadian guppies. Behaviour 155, 265–278 (2018).

    Google Scholar 

  • 11.

    Ferrari, M. C. O., McCormick, M. I., Meekan, M. G. & Chivers, D. P. Background level of risk and the survival of predator-naive prey: can neophobia compensate for predator naivety in juvenile coral reef fishes? Proc Roy Soc B 282, 20142197 (2015).

    Google Scholar 

  • 12.

    Joyce, B. J., Demers, E. E. M., Chivers, D. P., Ferrari, M. C. O. & Brown, G. E. Risk-induced neophobia is constrained by ontogeny in juvenile convict cichlids. Anim Behav 114, 37–43 (2016).

    Google Scholar 

  • 13.

    Myers, K. M. & Davis, M. Mechanisms of fear extinction. Mol Psychiatr 12, 120–150 (2007).

    Google Scholar 

  • 14.

    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am Nat 153, 649–659 (1999).

    PubMed  Google Scholar 

  • 15.

    McLean, C. P., Asnaani, A. & Foa, E. B. In Evidence Based Treatments for Trauma-related Psychological Disorders: A Practical Guide for Clinicians (eds U Schnyder & M Cloitre) 143-159 (Springer, 2015).

  • 16.

    Thompson, R. F. & Spencer, W. A. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73, 16 (1966).

    PubMed  Google Scholar 

  • 17.

    Rachman, S. The return of fear: Review and prospect. Clin Psychol Rev 9, 147–168 (1989).

    Google Scholar 

  • 18.

    Vervliet, B., Baeyens, F., Van den Bergh, O. & Hermans, D. Extinction, generalization, and return of fear: a critical review of renewal research in humans. Biol Psychol 92, 51–58 (2013).

    PubMed  Google Scholar 

  • 19.

    Tsao, J. C. & Craske, M. G. Timing of treatment and return of fear: Effects of massed, uniform-, and expanding-spaced exposure schedules. Behav Ther 31, 479–497 (2000).

    Google Scholar 

  • 20.

    Xue, C. et al. A meta-analysis of risk factors for combat-related PTSD among military personnel and veterans. PloS One 10, e0120270 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 21.

    Laborda, M. A. & Miller, R. R. Preventing return of fear in an animal model of anxiety: Additive effects of massive extinction and extinction in multiple contexts. Behav Ther 44, 249–261 (2013).

    PubMed  Google Scholar 

  • 22.

    Mineka, S., Mystkowski, J. L., Hladek, D. & Rodriguez, B. I. The effects of changing contexts on return of fear following exposure therapy for spider fear. J Consult Clin Psych 67, 599 (1999).

    Google Scholar 

  • 23.

    Vansteenwegen, D. et al. Return of fear in a human differential conditioning paradigm caused by a return to the original acquistion context. Behav Res Ther 43, 323–336 (2005).

    PubMed  Google Scholar 

  • 24.

    von Frisch, K. Zur psychologie des fisch-schwarmes. Naturwissenschaften 26, 601–606 (1938).

    ADS  Google Scholar 

  • 25.

    von Frisch, K. Über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Z Vergl Physiol 29, 46–149 (1941).

    Google Scholar 

  • 26.

    Ferrari, M. C. O., Wisenden, B. D. & Chivers, D. P. Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88, 698–724 (2010).

    Google Scholar 

  • 27.

    Mathis, A. In Fish Defenses. Volume 2: Pathogens, Parasites and Predators (eds. G. Zaccone, C. Perrière, A. Mathis, & B. G. Kapoor) 323–386 (Science Publishers, 2009).

  • 28.

    Suboski, M. D. Releaser-induced recognition learning. Psychol Rev 97, 271–284 (1990).

    Google Scholar 

  • 29.

    Larson, J. K. & McCormick, M. I. The role of chemical alarm signals in facilitating learned recognition of novel chemical cues in a coral reef fish. Anim Behav 69, 51–57 (2005).

    Google Scholar 

  • 30.

    Brown, G. E., Ferrari, M. C., Elvidge, C. K., Ramnarine, I. & Chivers, D. P. Phenotypically plastic neophobia: a response to variable predation risk. Proc Roy Soc B 280, 20122712 (2013).

    Google Scholar 

  • 31.

    Brown, G. E., Demers, E. E., Joyce, B. J., Ferrari, M. C. & Chivers, D. P. Retention of neophobic predator recognition in juvenile convict cichlids: effects of background risk and recent experience. Anim Cogn 18, 1331–1338 (2015).

    PubMed  Google Scholar 

  • 32.

    Crane, A. L. & Ferrari, M. C. O. Learning of safety by a social fish: applications for studying post-traumatic stress in humans. Anim Behav 132, 271–279 (2017).

    Google Scholar 

  • 33.

    Crane, A. L., Feyten, L. E. A., Ramnarine, I. & Brown, G. E. Temporally-variable predation risk and fear retention in Trinidadian guppies. https://doi.org/10.1093/beheco/araa055.

  • 34.

    Borghans, B. & Homberg, J. R. Animal models for posttraumatic stress disorder: An overview of what is used in research. World J Psychiat 5, 387–396 (2015).

    Google Scholar 

  • 35.

    Abudayah, W. & Mathis, A. Predator recognition learning in rainbow darters Etheostoma caeruleum: specific learning and neophobia. J Fish Biol 89, 1612–1623 (2016).

    PubMed  Google Scholar 

  • 36.

    Ferrari, M. C. O., Gonzalo, A., Messier, F. & Chivers, D. P. Generalization of learned predator recognition: an experimental test and framework for future studies. Proc Roy Soc B 274, 1853–1859 (2007).

    Google Scholar 

  • 37.

    Mitchell, M. D., McCormick, M. I., Chivers, D. P. & Ferrari, M. C. Generalization of learned predator recognition in coral reef ecosystems: how cautious are damselfish? Funct Ecol 27, 299–304 (2013).

    Google Scholar 

  • 38.

    Elvidge, C., Ramnarine, I., Godin, J. G. & Brown, G. Size‐mediated response to public cues of predation risk in a tropical stream fish. J Fish Biol 77, 1632–1644 (2010).

    PubMed  Google Scholar 

  • 39.

    Katwaroo-Andersen, J., Elvidge, C. K., Ramnarine, I. & Brown, G. E. Interactive effects of reproductive assets and ambient predation risk on the threat-sensitive decisions of Trinidadian guppies. Curr Zool 62, 221–226 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Brown, G. E., Elvidge, C. K., Ramnarine, I., Ferrari, M. C. & Chivers, D. P. Background risk and recent experience influences retention of neophobic responses to predators. Behav Ecol Sociobiol 69, 737–745 (2015).

    Google Scholar 

  • 41.

    Ferrari, M. C. O., Brown, G. E., Bortolotti, G. R. & Chivers, D. P. Linking predator risk and uncertainty to adaptive forgetting: a theoretical framework and empirical test using tadpoles. Proc Roy Soc B 277, 2205–2210 (2010).

    Google Scholar 

  • 42.

    Crane, A. L. & Ferrari, M. C. O. Evidence for risk extrapolation in decision making by tadpoles. Sci Rep 7, 43255 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Ferrari, M. C. & Chivers, D. P. Temporal dynamics of information use in learning and retention of predator-related information in tadpoles. Anim Cogn 16, 1–10 (2013).

    Google Scholar 

  • 44.

    Johnson, D. D., Blumstein, D. T., Fowler, J. H. & Haselton, M. G. The evolution of error: Error management, cognitive constraints, and adaptive decision-making biases. Trends Ecol Evol 28, 474–481 (2013).

    PubMed  Google Scholar 

  • 45.

    Gershman, S. J., Jones, C. E., Norman, K. A., Monfils, M.-H. & Niv, Y. Gradual extinction prevents the return of fear: implications for the discovery of state. Front Behav Neurosci 7, 164 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Goswami, S., Rodríguez-Sierra, O., Cascardi, M. & Paré, D. Animal models of post-traumatic stress disorder: face validity. Front Neurosci 7, 1–14 (2013).

    Google Scholar 

  • 47.

    Clinchy, M. et al. The neurological ecology of fear: insights neuroscientists and ecologists have to offer one another. Front Behav Neurosci 5, 1–6 (2011).

    Google Scholar 

  • 48.

    Caramillo, E. M., Khan, K. M., Collier, A. D. & Echevarria, D. J. Modeling PTSD in the zebrafish: Are we there yet? Behav Brain Res 276, 151–160 (2015).

    PubMed  Google Scholar 

  • 49.

    Stewart, A. M., Yang, E., Nguyen, M. & Kalueff, A. V. Developing zebrafish models relevant to PTSD and other trauma-and stressor-related disorders. Prog Neuro Psychoph 55, 67–79 (2014).

    Google Scholar 

  • 50.

    Yehuda, R. & Antelman, S. M. Criteria for rationally evaluating animal models of postraumatic stress disorder. Biol Psychiat 33, 479–486 (1993).

    PubMed  Google Scholar 

  • 51.

    Burns-Cusato, M. & Morrow, M. E. Fear in the captive-bred Attwater’s prairie chicken as an indicator of postrelease survival. Int J Comp Psychol 16, 95–110 (2003).

    Google Scholar 

  • 52.

    Shier, D. M. & Owings, D. H. Effects of social learning on predator training and postrelease survival in juvenile black-tailed prairie dogs, Cynomys ludovicianus. Anim Behav 73, 567–577 (2007).

    Google Scholar 

  • 53.

    Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol Appl 4, 367–387 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Deacon, A. E., Jones, F. A. & Magurran, A. E. Gradients in predation risk in a tropical river system. Curr Zool 64, 213–221 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Magurran, A. E. & Seghers, B. H. Population differences in predator recognition and attack cone avoidance in the guppy Poecilia reticulata. Anim Behav 40, 443–452 (1990).

    Google Scholar 

  • 56.

    Barbosa, M. et al. Individual variation in reproductive behaviour is linked to temporal heterogeneity in predation risk. Proc Roy Soc B 285, 20171499 (2018).

    Google Scholar 

  • 57.

    Brown, G. E. & Godin, J. G. J. Chemical alarm signals in wild Trinidadian gunnies (Poecilia reticulata). Can J Zool 77, 562–570 (1999).

    Google Scholar 

  • 58.

    Brown, G. E., Macnaughton, C. J., Elvidge, C. K., Ramnarine, I. & Godin, J. G. J. Provenance and threat-sensitive predator avoidance patterns in wild-caught Trinidadian guppies. Behav Ecol Sociobiol 63, 699–706 (2009).

    Google Scholar 

  • 59.

    Crane, A. L., Ferarri, M. C. O., Rivera-Hernandez, I. A. E. & Brown, G. E. Microhabitat complexity influences fear acquisition in fathead minnows. Behav Ecol 31, 261–266 (2020).

    Google Scholar 

  • 60.

    Smith, R. J. F. Alarm signals in fishes. Rev Fish Biol Fisher 2, 33–63 (1992).

    Google Scholar 


  • Source: Ecology - nature.com

    Unlocking the secrets of a plastic-eater

    Range-wide genetic structure in the thorn-tailed rayadito suggests limited gene flow towards peripheral populations