in

First report of the occurrence of Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae), an invasive species in Nigeria, West Africa

  • 1.

    Olife, I. C., Ibeagha, O. A. & Onwualu, A. P. Citrus fruits value chain development in Nigeria. J. Biol. Agric. Healthcare 5, 36–47 (2015).

    Google Scholar 

  • 2.

    Jolaoso, M. A. et al. Citrus production and processing in Nigeria. RMRDC Monograph Series No. 003. ISBN 078-978-915-003-8 (2011).

  • 3.

    FAO. FAOSTAT. http://faostat.fao.org/ (2019).

  • 4.

    Aubert, B. Trioza erytreae Del Guercio and Diaphorina citri Kuwayama (Homoptera: Psylloidea), the two vectors of citrus greening disease: biological aspects and possible control strategies. Fruits 42, 149–162 (1987).

    Google Scholar 

  • 5.

    Lee, R. F. Control of virus diseases of citrus. Adv. Virus Res. 91, 143–173, https://doi.org/10.1016/bs.aivir.2014.10.002 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Bové, J. M. Huanglongbing: a destructive, newly emerging, century-old disease of citrus. J. Plant Pathol. 88, 427–453 (2006).

    Google Scholar 

  • 7.

    Gottwald, T. R. Current epidemiological understanding of citrus Huanglongbing. Annu. Rev. Phytopathol. 48, 19–139 (2010).

    Article  Google Scholar 

  • 8.

    da Graça, J. V. Citrus greening disease. Annu. Rev. Phytopathol. 29, 109–136 (1991).

    Article  Google Scholar 

  • 9.

    Grafton-Cardwell, E. E., Stelinski, L. L. & Stansly, P. A. Biology and management of Asian citrus psyllid, vector of huanglongbing pathogens. Annu. Rev. Entomol. 58, 413–432 (2013).

    CAS  Article  Google Scholar 

  • 10.

    Wang, Y. et al. Genetic diversity of Diaphorina citri and its endosymbionts across east and southeast Asia. Pest Manag. Sci. 73, 2090–2099 (2017).

    CAS  Article  Google Scholar 

  • 11.

    Saponari, M. et al. First report of Candidatus Liberibacter asiaticus associated with Huanglongbing in sweet Orange in Ethiopia. Plant Dis. 94, 482 (2010).

    CAS  Article  Google Scholar 

  • 12.

    Wang, C. L. Ecological studies of Asiatic citrus psyllid (Diaphorina citri Kuwayama) with special reference to its spatial distribution. J. Agric. Res. China 30, 412–419 (1981).

    Google Scholar 

  • 13.

    French, J. V., Kahlke, C. J. & da Graça, J. V. First record of the Asian citrus psylla Diaphorina citri Kuwayama (Homoptera:Psyllidae), in Texas. Subtrop. Plant Sci. 53, 14–15 (2001).

    Google Scholar 

  • 14.

    Yamamoto, P. T., Paiva, P. E. B. & Gravena, S. Population dynamics of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) in citrus orchards in the North of Sao Paulo State, Brazil. Neotrop. Entomol. 30, 165–170 (2001).

    Article  Google Scholar 

  • 15.

    Rodríguez-Palomera, M., Cambero-Campos, J., Robles-Bermúdez, A., Carvajal-Cazola, C. & Estrada-Virgen, O. Associated natural enemies of Diaphorina citri Kuwayama (Hemiptera: Psyllidae) in Persian lime (Citrus latifolia Tanaka) in Nayarit. México. Acta Zool. Mexicana 28, 625–629 (2012).

    Google Scholar 

  • 16.

    EPPO. PQR database. Paris, France: European and Mediterranean Plant Protection Organization. http://www.eppo.int/DATABASES/pqr/pqr.htm (2014).

  • 17.

    Sétamou, M., Flores, D., French, J. V. & Hall, D. G. Dispersion patterns and sampling plans for Diaphorina citri (Hemiptera: Psyllidae) in citrus. J. Econ. Entomol. 101, 1470–1487 (2008).

    Article  Google Scholar 

  • 18.

    Shimwela, M. M. et al. First occurrence of Diaphorina citri in East Africa, characterization of the Ca. Liberibacter species causing Huanglongbing (HLB) in Tanzania, and potential further spread of D. citri and HLB in Africa and Europe. Eur. J. Plant Pathol. 146, 346–368 (2016).

    Article  Google Scholar 

  • 19.

    Rwomushana, I. et al. Detection of Diaphorina citri Kuwayama (Hemiptera: Liviidae) in Kenya and potential implication for the spread of Huanglongbing disease in East Africa. Biol. Invasions 19, 2777–2787 (2017).

    Article  Google Scholar 

  • 20.

    Mead, F. W. The Asiatic citrus psyllid, Diaphorina citri Kuwayama (Homoptera: Psyllidae). Florida Department of Agriculture Conservation Service, Div. Plant Ind. Entomol. Circ. 180, 1–3. http://www.freshfromflorida.com/pi/enpp/ento/entcirc/ent180.pdf (1977).

  • 21.

    Yang, C. T. Psyllidae of Taiwan. Taiwan Mus. Spec. Publ. Ser. 3, 37–41 (1984).

    Google Scholar 

  • 22.

    OEPP/EPPO. EPPO Standards PM 7/52(1). Diagnostic protocol for Diaphorina citri. OEPP/EPPO Bull. 35, 331–333, https://doi.org/10.1111/j.1365-2338.2005.00839.x (2005).

    Article  Google Scholar 

  • 23.

    Thao, M. L., Clark, M. A., Burckhardt, D. H., Moran, N. A. & Baumann, P. Phylogenetic analysis of vertically transmitted psyllid endosymbionts (Candidatus Carsonella ruddii) based on atpAGD and rpoC: comparisons with 16S-23S rDNA-derived phylogeny. Curr. Microbiol. 42, 419–421 (2001).

    CAS  Article  Google Scholar 

  • 24.

    Nakabachi, A. et al. Defensive bacteriome symbiont with a drastically reduced. Curr. Biol. 23, 1478–1484 (2013).

    CAS  Article  Google Scholar 

  • 25.

    Wang, Y. et al. Phylogeography of Diaphorina citri (Hemiptera: Liviidae) and its primary endosymbiont, ‘Candidatus Carsonella ruddii’: an evolutionary approach to host-endosymbiont interaction. Pest Manag. Sci. 74, 2185–2194 (2018).

    CAS  Article  Google Scholar 

  • 26.

    Hall, D. G., Richardson, M. L., Ammar, E. D. & Halbert, S. E. Asian citrus psyllid, Diaphorina citri, vector of citrus Huanglongbing disease. Entomol. Exp. Appl. 146, 207–223 (2013).

    Article  Google Scholar 

  • 27.

    Taylor, R. A. et al. Predicting the fundamental thermal niche of crop pests and diseases in a changing world: a case study on citrus greening. J. Appl. Ecol. 56, 2057–2068 (2018).

    Google Scholar 

  • 28.

    de León, J. H. et al. Two separate introductions of Asian citrus psyllid populations found in the American continents. Ann. Entomol. Soc. Am. 104, 1392–1398 (2011).

    Article  Google Scholar 

  • 29.

    Boykin, L. M. et al. Overview of worldwide diversity of Diaphorina citri Kuwayama mitochondrial cytochrome oxidase 1 haplotypes: two old world lineages and a new world invasion. Bull. Entomol. Res. 102, 573–582 (2012).

    CAS  Article  Google Scholar 

  • 30.

    Guidolin, A. S., Fresia, P. & Cônsoli, F. L. The genetic structure of an invasive pest, the Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae). PLoS ONE 9(12), e115749, https://doi.org/10.1371/journal.pone.0115749 (2014).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Moran, N. A. Symbiosis as an adaptive process and source of phenotypic complexity. Proc. Natl. Acad. Sci. USA 104, 8627–8633 (2007).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Hall, A. A. et al. Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environ. Microbiol. 18, 2591–2603 (2016).

    CAS  Article  Google Scholar 

  • 33.

    Saha, S. et al. Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome. PLoS ONE 7(11), e50067, https://doi.org/10.1371/journal.pone.0050067 (2012).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Lashkari, M. Global genetic variation in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae) and the endosymbiont Wolbachia: links between Iran and the USA detected. Pest Manag. Sci. 70, 1033–1040 (2014).

    CAS  Article  Google Scholar 

  • 35.

    Martini, X., Rivera, M., Hoyte, A., Sétamou, M. & Stelinski, L. L. Effects of wind, temperature, and barometric pressure on Asian citrus psyllid (Hemiptera: Liviidae) flight behavior. J. Econ. Entomol. 111, 2570–2577 (2018).

    PubMed  Google Scholar 

  • 36.

    Halbert, S. E. The discovery of huanglongbing in Florida. Pages 7-11 in: Proc. 2nd International Citrus Canker and Huanglongbing Res Workshop, Orlando, FL (2005).

  • 37.

    Sétamou, M., Olufemi, J. A., Kunta, M., Dale, J. & da Graça, J. V. Distribution of Candidatus Liberibacter asiaticus in citrus and the Aisan citrus psyllid in Texas over a decade. Plant Dis. 104, 1118–1126, https://doi.org/10.1094/PDIS-08-19-1779-RE (2020).

  • 38.

    Dellaporta, S. L., Wood, J. & Hicks, J. B. A plant DNA mini preparation: Version II. Plant Mol. Biol. Rep. 1, 19–21 (1983).

    CAS  Article  Google Scholar 

  • 39.

    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp. 41, 95–98 (1999).

    CAS  Google Scholar 

  • 40.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  • 41.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS  Article  Google Scholar 

  • 42.

    Li, W., Hartung, J. S. & Levy, L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Meth. 66, 104–115 (2006).

    CAS  Article  Google Scholar 

  • 43.

    Li, W., Duan, Y., Brlansky, R., Twieg, E. & Levy, L. Incidences and population of ‘Candidatus Liberibacter asiaticus’ in Asian citrus psyllid (Diaphorina citri) on citrus plants affected by huanglongbing in Florida. Int. Res. Conf. HLB, Dec. 1-5, 2008, Orlando, Florida. (2008a).

  • 44.

    Li, W., Li, D., Twieg, E., Hartung, J. S. & Levy, L. Optimized quantification of unculturable Candidatus Liberibacter spp. in host plants using real-time PCR. Plant Dis. 92, 854–861 (2008b).

    CAS  Article  Google Scholar 

  • 45.

    Ajene, I. J., et al. First report of ‘Candidatus Liberibacter africanus’ associated with citrus greening disease in Nigeria. Plant Dis. 104, 1535–1535, https://doi.org/10.1094/PDIS-11-19-2380-PDN (2020).


  • Source: Ecology - nature.com

    Safely managed drinking water services in the Democratic People’s Republic of Korea: findings from the 2017 Multiple Indicator Cluster Survey

    Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse