in

Can information from citizen science data be used to predict biodiversity in stormwater ponds?

  • 1.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications 7, https://doi.org/10.1038/ncomms12558. (2016).

  • 2.

    Troudet, J. et al. Taxonomic bias in biodiversity data and societal preferences. Scientific Reports 7, 9132 (2017).

    ADS  Article  Google Scholar 

  • 3.

    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: challenges and benefits. Annual Review of Ecology, Evolution, and Systematics 41, 149–172 (2010).

    Article  Google Scholar 

  • 4.

    Dickinson, J. L. et al. The current state of citizen science as a tool for ecological research and public engagement. Frontiers in Ecology and the Environment 10, 291–297 (2012).

    Article  Google Scholar 

  • 5.

    Silvertown, J. Trends in Ecology and Evolution 24, 467–471 (2009).

    Article  Google Scholar 

  • 6.

    Devictor, V. et al. Citizen science programmes as useful tools for conservation biogeography. Diversity and Distribution 16, 354–362 (2010).

    Article  Google Scholar 

  • 7.

    Mair, L. et al. Evaluating citizen science data for forecasting species responses to national forest management. Ecology and Evolution. 7, 368–378 (2016).

    Article  Google Scholar 

  • 8.

    Aceves‐Bueno et al. The Accuracy of Citizen Science Data: A Quantitative Review. Bulletin of the Ecological Society of America 98, 278–290 (2017).

    Article  Google Scholar 

  • 9.

    Snäll, T. et al. Evaluating temporal variation in citizen science data against temporal variation in the environment. Ecography 37, 293–300 (2014).

    Article  Google Scholar 

  • 10.

    Scher, O. & Thiery, A. Odonata, Amphibia and environmental characteristics in motorway stormwater retention ponds (Southern France). Hydrobiologia 551, 237–251 (2005).

    Article  Google Scholar 

  • 11.

    Le Viol, I., Mocq, J., Julliard, R. & Kerbiriou, C. The contribution of motorway stormwater retention ponds to the biodiversity of aquatic macroinvertebrates. Biological Conservation 142, 3163–3171 (2009).

    Article  Google Scholar 

  • 12.

    Hassall, C. & Anderson, S. Stormwater ponds can contain comparable biodiversity to unmanaged wetlands in urban areas. Hydrobiologia 745, 137–149 (2015).

    Article  Google Scholar 

  • 13.

    Holtmann, L. et al. Stormwater ponds promote dragonfly (Odonata) species richness and density in urban areas. Ecological Engineering 118, 1–11 (2018).

    Article  Google Scholar 

  • 14.

    CEDR. Management of contaminated runoff water: current practice and future research needs. SBN: 979-10-93321-18-9 (2016).

  • 15.

    European Commission, The EU Floods Directive. [online] Available at, http://ec.europa.eu/environment/water/flood_risk/, [Accessed 16 March 2019] (2012).

  • 16.

    Corbet, P. S. Dragonflies: Behaviour and Ecology of Odonata. — Harley Books, Martins. (1999).

  • 17.

    Oertli, B. et al. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104, 59–70 (2002).

    Article  Google Scholar 

  • 18.

    Hassall, C., Hollingshead, J. & Hull, A. Environmental correlates of plant and invertebrate species richness in ponds. Biodiversity and Conservation 20, 3189–3222 (2011).

    Article  Google Scholar 

  • 19.

    Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26, 867–878 (1999).

    Article  Google Scholar 

  • 20.

    Snäll, T. et al. Evaluating citizen-based presence data for bird monitoring. Biological Conservation 144, 804–810 (2011).

    Article  Google Scholar 

  • 21.

    Gardiner, M. M. et al. Lessons from lady beetles: accuracy of monitoring data from US and UK citizen‐science programs. Frontiers in Ecology and the Environment 10, 471–76 (2012).

    Article  Google Scholar 

  • 22.

    Johansson, F. et al. Environmental variables drive differences in the beta diversity of dragonfly assemblages among urban stormwater ponds. Ecological Indicators 106, 105529 (2019).

    Article  Google Scholar 

  • 23.

    Sahlén, G. Sveriges Trollsländor. Fältbiologerna, Stochholm (1996).

  • 24.

    Tiago, P., Pereira, H. M. & Capinha, C. Using citizen science data to estimate climatic niches and species distributions. Basic and Applied Ecology 20, 75–85 (2017).

    Article  Google Scholar 

  • 25.

    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).

    Article  Google Scholar 

  • 26.

    Anderson, M. J. & Robinson, J. Generalized discriminant analysis based on distances. Australian & New Zealand Journal of Statistics 45, 301–318 (2003).

    MathSciNet  Article  Google Scholar 

  • 27.

    Anderson, M. J. Distance‐based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet  Article  Google Scholar 

  • 28.

    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecology Letter 9, 683–693 (2006).

    Article  Google Scholar 

  • 29.

    Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2, 3–0 (2017).

    Google Scholar 

  • 30.

    Clobert, J., Baguette, M., Benton, T.G., & Bullock, J.M. Dispersal ecology and evolution. Oxford: Oxford Univ. Press. (2012).

  • 31.

    Bird, T. J. et al. Statistical solutions for error and bias in global citizen science datasets. Biological Conservation 173, 144–154 (2014).

    Article  Google Scholar 

  • 32.

    Losey, J. E., Perlman, J. E. & Hoebeke, E. R. Citizen scientist rediscovers rare nine-spotted lady beetle, Coccinella novemnotata, in eastern North America. Journal of Insect Conservation 11, 415–417 (2007).

    Article  Google Scholar 

  • 33.

    Street, M. & Titmus, G. The colonisation of experimental ponds by Chironomidae Diptera. Aquatic Insects 4, 233–244 (1979).

    Article  Google Scholar 

  • 34.

    Gee, J. H. R., Smith, B. D., Lee, K. M. & Griffiths, S. W. The ecological basis of freshwater pond management for biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 7, 91–104 (1997).

    Article  Google Scholar 

  • 35.

    Bloechl et al. Abundance, diversity and succession of aquatic Coleoptera and Heteroptera in a cluster of artificial ponds in the North German Lowlands. Limnologica 40, 215–225 (2010).

    Article  Google Scholar 

  • 36.

    MacArthur R. H., & Wilson E. O. The theory of island biogeography. Princeton, NJ: Princeton University Press (1967).

  • 37.

    Kohn, D. D. & Walsh, D. M. Plant species richness – the effect of island and habitat diversity. Journal of Ecology 82, 367–377 (1994).

    Article  Google Scholar 

  • 38.

    Soininen, J., McDonald, R. & Hillebrand, H. The distance decay of similarity in ecological communities. Ecography 30, 3–12 (2007).

    Article  Google Scholar 

  • 39.

    Hill, M. J., Heino, J., Thornhill, I., Ryves, D. B. & Wood, P. J. Effects of dispersal mode on the environmental and spatial correlates of nestedness and species turnover in pond communities. Oikos 126, 1575–1585 (2017).

    Article  Google Scholar 

  • 40.

    Heino, J. Does dispersal ability affect the relative importance of environmental control and spatial structuring of littoral macroinvertebrate communities? Oecologia 171, 971–980 (2013).

    ADS  Article  Google Scholar 

  • 41.

    Williams, P. et al. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115, 329–341 (2004).

    Article  Google Scholar 

  • 42.

    Jeppson, T. et al. The use of historical collections to estimate population trends: A case study using Swedish longhorn beetles (Coleoptera: Cerambycidae). Biological Conservation 143, 1940–1950 (2010).

    Article  Google Scholar 

  • 43.

    Lantmäteriet, Geodataportalen. URL, https://www.geodata.se (2020).


  • Source: Ecology - nature.com

    Safely managed drinking water services in the Democratic People’s Republic of Korea: findings from the 2017 Multiple Indicator Cluster Survey

    Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse