in

Robust leaf trait relationships across species under global environmental changes

  • 1.

    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).

    ADS  CAS  PubMed  Google Scholar 

  • 2.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Osnas, J. L., Lichstein, J. W., Reich, P. B. & Pacala, S. W. Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science 340, 741–744 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 4.

    Wright, I. J. et al. Modulation of leaf economic traits and trait relationships by climate. Glob. Ecol. Biogeogr. 14, 411–421 (2005).

    Google Scholar 

  • 5.

    Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Google Scholar 

  • 6.

    Reich, P. B. & Flores-Moreno, H. Peeking beneath the hood of the leaf economics spectrum. New Phytol. 214, 1395–1397 (2017).

    PubMed  Google Scholar 

  • 7.

    Reich, P. B. Key canopy traits drive forest productivity. Proc. R. Soc. B 279, 2128–2134 (2012).

    PubMed  Google Scholar 

  • 8.

    Sakschewski, B. et al. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model. Glob. Chang Biol. 21, 2711–2725 (2015).

    ADS  PubMed  Google Scholar 

  • 9.

    van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).

    ADS  PubMed  Google Scholar 

  • 10.

    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).

    ADS  Google Scholar 

  • 12.

    Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).

    CAS  PubMed  Google Scholar 

  • 13.

    Wang, Y. P. et al. Correlations among leaf traits provide a significant constraint on the estimate of global gross primary production. Geophys. Res. Lett. 39, L19405 (2012).

    ADS  Google Scholar 

  • 14.

    Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant and ecosystem functional biogeography. Proc. Natl Acad. Sci. USA 111, 13697–13702 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 15.

    Anderegg, L. et al. Within-species patterns challenge our understanding of the leaf economics spectrum. Ecol. Lett. 21, 734–744 (2018).

    PubMed  Google Scholar 

  • 16.

    Rozendaal, D. M. A., Hurtado, V. H. & Poorter, L. Plasticity in leaf traits of 38 tropical tree species in response to light; relationships with light demand and adult stature. Funct. Ecol. 20, 207–216 (2006).

    Google Scholar 

  • 17.

    Doughty, C. E. et al. Tropical forest leaves may darken in response to climate change. Nat. Ecol. Evol. 2, 1918–1924 (2018).

    PubMed  Google Scholar 

  • 18.

    Yang, Y. et al. Quantifying leaf-trait covariation and its controls across climates and biomes. New Phytol. 221, 155–168 (2019).

    CAS  PubMed  Google Scholar 

  • 19.

    Reich, P. B., Wright, I. J. & Lusk, C. H. Predicting leaf physiology from simple plant and climate attributes: a global GLOPNET analysis. Ecol. Appl. 17, 1982–1988 (2007).

    PubMed  Google Scholar 

  • 20.

    Meng, T. T. et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352 (2015).

    ADS  Google Scholar 

  • 21.

    Fyllas, N. M. et al. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v. 1). Geosci. Model Dev. 7, 1251–1269 (2014).

    ADS  Google Scholar 

  • 22.

    Weng, E., Farrior, C. E., Dybzinski, R. & Pacala, S. W. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework. Glob. Change Biol. 23, 2482–2498 (2017).

    ADS  Google Scholar 

  • 23.

    Lusk, C. H., Reich, P. B., Montgomery, R. A., Ackerly, D. D. & Cavender-Bares, J. Why are evergreen leaves so contrary about shade? Trends Ecol. Evol. 23, 299–303 (2008).

    PubMed  Google Scholar 

  • 24.

    Fisher, R. A. et al. Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5 (ED). Geosci. Model Dev. 8, 3593–3619 (2015).

    ADS  Google Scholar 

  • 25.

    Verheijen, L. M. et al. Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. Glob. Change Biol. 21, 3074–3086 (2015).

    ADS  Google Scholar 

  • 26.

    Yang, Y., Zhu, Q., Peng, C., Wang, H. & Chen, H. From plant functional types to plant functional traits: a new paradigm in modelling global vegetation dynamics. Prog. Phys. Geog. 39, 514–535 (2015).

    Google Scholar 

  • 27.

    Williams, J. W., Jackson, S. T. & Kutzbach, J. E. Projected distributions of novel and disappearing climates by 2100 AD. Proc. Natl Acad. Sci. USA 104, 5738–5742 (2007).

    ADS  CAS  PubMed  Google Scholar 

  • 28.

    van Bodegom, P. M. et al. Going beyond limitations of plant functional types when predicting global ecosystem–atmosphere fluxes: exploring the merits of traits-based approaches. Glob. Ecol. Biogeogr. 21, 625–636 (2012).

    Google Scholar 

  • 29.

    Keenan, T. F. & Niinemets, Ülo Global leaf trait estimates biased due to plasticity in the shade. Nat. Plants 3, 16201 (2016).

    PubMed  Google Scholar 

  • 30.

    Kovenock, M. & Swann, A. L. Leaf trait acclimation amplifies simulated climate warming in response to elevated carbon dioxide. Glob. Biogeochem. Cycles. 32, 1437–1448 (2018).

    ADS  CAS  Google Scholar 

  • 31.

    Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588 (2009).

    PubMed  Google Scholar 

  • 32.

    De Frenne, P. et al. Light accelerates plant responses to warming. Nat. Plants 1, 15110 (2015).

    PubMed  Google Scholar 

  • 33.

    Marquet, P. A. et al. Scaling and power-laws in ecological systems. J. Exp. Biol. 208, 1749–1769 (2005).

    PubMed  Google Scholar 

  • 34.

    Wright, I. J., Reich, P. B. & Westoby, M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Funct. Ecol. 15, 423–434 (2001).

    Google Scholar 

  • 35.

    Reich, P. B. et al. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562, 263–267 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 36.

    Lloyd, J., Bloomfield, K., Domingues, T. F. & Farquhar, G. D. Photosynthetically relevant foliar traits correlating better on a mass vs an area basis: of ecophysiological relevance or just a case of mathematical imperatives and statistical quicksand? New Phytol. 199, 311–321 (2013).

    CAS  PubMed  Google Scholar 

  • 37.

    Westoby, M., Reich, P. B. & Wright, I. J. Understanding ecological variation across species: area-based vs mass-based expression of leaf traits. New Phytol. 199, 322–323 (2013).

    PubMed  Google Scholar 

  • 38.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    ADS  PubMed  Google Scholar 

  • 39.

    Poorter, H. et al. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytol. 212, 838–855 (2016).

    CAS  PubMed  Google Scholar 

  • 40.

    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Rustad, L. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 17, 927–942 (2011).

    ADS  Google Scholar 

  • 43.

    León-Sánchez, L. et al. Altered leaf elemental composition with climate change is linked to reductions in photosynthesis, growth and survival in a semi-arid shrubland. J. Ecol. 108, 47–60 (2020).

    Google Scholar 

  • 44.

    Temme, A. A. et al. Increases in CO2 from past low to future high levels result in “slower” strategies on the leaf economic spectrum. Perspect. Plant Ecol. 29, 41–50 (2017).

    Google Scholar 

  • 45.

    Salguero-Gómez, R. Applications of the fast-slow continuum and reproductive strategy framework of plant life histories. New Phytol. 213, 1618–1624 (2017).

    PubMed  Google Scholar 

  • 46.

    Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–371 (2005).

    PubMed  Google Scholar 

  • 47.

    Luo, Y. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).

    Google Scholar 

  • 48.

    Dwyer, J. M., Hobbs, R. J. & Mayfield, M. M. Specific leaf area responses to environmental gradients through space and time. Ecology 95, 399–410 (2014).

    PubMed  Google Scholar 

  • 49.

    Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat. Ecol. Evol. 3, 400–406 (2019).

    PubMed  Google Scholar 

  • 50.

    Wang, C., McCormack, M. L., Guo, D. & Li, J. Global meta-analysis reveals different patterns of root tip adjustments by angiosperm and gymnosperm trees in response to environmental gradients. J. biogeogr. 46, 123–133 (2019).

    Google Scholar 

  • 51.

    Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. New Phytol. 185, 780–791 (2010).

    CAS  PubMed  Google Scholar 

  • 52.

    Galmes, J., Kapralov, M. V., Copolovici, L. O., Hermida-Carrera, C. & Niinemets, Ü. Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynth. Res. 123, 183–201 (2015).

    CAS  PubMed  Google Scholar 

  • 53.

    Shao, J. et al. Plant evolutionary history mainly explains the variance in biomass responses to climate warming at a global scale. New Phytol. 222, 1338–1351 (2019).

    PubMed  Google Scholar 

  • 54.

    Osnas, J. L. et al. Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proc. Natl Acad. Sci. USA 115, 5480–5485 (2018).

    CAS  PubMed  Google Scholar 

  • 55.

    Onoda, Y. et al. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol. 214, 1447–1463 (2017).

    CAS  PubMed  Google Scholar 

  • 56.

    Feng, Y. L. et al. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proc. Natl Acad. Sci. USA 106, 1853–1856 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 57.

    Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecol. Lett. 14, 301–312 (2011).

    PubMed  Google Scholar 

  • 58.

    Leakey, A. D. et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60, 2859–2876 (2009).

    CAS  PubMed  Google Scholar 

  • 59.

    Bauer, G. A., Berntson, G. M. & Bazzaz, F. A. Regenerating temperate forests under elevated CO2 and nitrogen deposition: comparing biochemical and stomatal limitation of photosynthesis. New Phytol. 152, 249–266 (2001).

    CAS  Google Scholar 

  • 60.

    Martin, K. C. et al. Nitrogen fertilization enhances water-use efficiency in a saline environment. Plant Cell Environ. 33, 344–357 (2010).

    CAS  PubMed  Google Scholar 

  • 61.

    Oleson, K. W. et al. Technical Description of Version 4.5 of the Community Land Model (CLM). Ncar Technical Note NCAR/TN-503+STR, National Center for Atmospheric Research, Boulder, CO, 422 pp (2013). https://doi.org/10.5065/D6RR1W7M.

  • 62.

    Cui, E. et al. Vegetation functional properties determine uncertainty of simulated ecosystem productivity: a traceability analysis in the East Asian monsoon region. Glob. Biogeochem. Cycles 33, 668–689 (2019).

    ADS  CAS  Google Scholar 

  • 63.

    Fry, E. L. et al. Using plant, microbe, and soil fauna traits to improve the predictive power of biogeochemical models. Methods Ecol. Evol. 10, 146–157 (2019).

    Google Scholar 

  • 64.

    He, N. et al. Ecosystem traits linking functional traits to macroecology. Trends Ecol. Evol. 34, 200–210 (2019).

    PubMed  Google Scholar 

  • 65.

    Liang, J., Qi, X., Souza, L. & Luo, Y. Processes regulating progressive nitrogen limitation under elevated carbon dioxide: a meta-analysis. Biogeosciences 13, 2689–2699 (2016).

    ADS  CAS  Google Scholar 

  • 66.

    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).

    Google Scholar 

  • 67.

    Gurevitch. J. & Hedges, L. V. Meta-analysis: combining the results of independent experiments. In: Scheiner, S. M. & Gurevitch, J. (eds) Design and Analysis of Ecological Experiments. (Chapman and Hall, New York, 1993). pp 378–425.

  • 68.

    Wright, I. J. et al. Assessing the generality of global leaf trait relationships. New Phytol. 166, 485–496 (2005).

    PubMed  Google Scholar 

  • 69.

    Spruyt, V. How to Draw an Error Ellipse Representing the Covariance Matrix? Computer Vision for Dummies, 2014. https://www.visiondummy.com/2014/04/draw-error-ellipse-representing-covariance-matrix/.


  • Source: Ecology - nature.com

    A layered approach to safety

    Tiny sand grains trigger massive glacial surges