in

Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems

  • 1.

    Ormerod, S. J., Dobson, M., Hildrew, A. G. & Townsend, C. R. Multiple stressors in freshwater ecosystems. Freshw. Biol. 55, 1–4 (2010).

    Google Scholar 

  • 2.

    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B 283, 20152592 (2016).

    PubMed  Google Scholar 

  • 3.

    van Dijk, G. M., van Liere, L., Admiraal, W., Bannink, B. A. & Cappon, J. J. Present state of the water quality of European rivers and implications for management. Sci. Total Environ. 145, 187–195 (1994).

    Google Scholar 

  • 4.

    Richardson, J. et al. Effects of multiple stressors on cyanobacteria abundance varies with lake type. Glob. Change Biol. 24, 5044–5055 (2018).

    Google Scholar 

  • 5.

    Schäfer, R. B., Kühn, B., Malaj, E., König, A. & Gergs, R. Contribution of organic toxicants to multiple stress in river ecosystems. Freshw. Biol. 61, 2116–2128 (2016).

    Google Scholar 

  • 6.

    Schinegger, R., Palt, M., Segurado, P. & Schmutz, S. Untangling the effects of multiple human stressors and their impacts on fish assemblages in European running waters. Sci. Total Environ. 573, 1079–1088 (2016).

    CAS  PubMed  Google Scholar 

  • 7.

    Folt, C. L. et al. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 44, 864–877 (1999).

    Google Scholar 

  • 8.

    Nõges, P. et al. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Sci. Total Environ. 540, 43–52 (2016).

    PubMed  Google Scholar 

  • 9.

    Piggott, J. J., Townsend, C. R. & Matthaei, C. D. Reconceptualizing synergism and antagonism among multiple stressors. Ecol. Evol. 5, 1538–1547 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Jackson, M. C., Loewen, C. J. G., Vinebrooke, R. D. & Chimimba, C. T. Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Glob. Change Biol. 22, 180–189 (2016).

    Google Scholar 

  • 11.

    De Laender, F. Community- and ecosystem-level effects of multiple environmental change drivers: beyond null model testing. Glob. Change Biol. 24, 5021–5030 (2018).

    Google Scholar 

  • 12.

    Skjelkvåle, B. L. et al. Regional scale evidence for improvements in surface water chemistry 1990–2001. Environ. Pollut. 137, 165–176 (2005).

    PubMed  Google Scholar 

  • 13.

    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    PubMed  Google Scholar 

  • 14.

    Palmer, M. A., Menninger, H. L. & Bernhardt, E. River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshw. Biol. 55, 205–222 (2010).

    Google Scholar 

  • 15.

    Vinebrooke, R., Cottingham, K. & Norberg, M. Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co‐tolerance. Oikos 3, 451–457 (2004).

    Google Scholar 

  • 16.

    Schäfer, R. B. & Piggott, J. J. Advancing understanding and prediction in multiple stressor research through a mechanistic basis for null models. Glob. Change Biol. 24, 1817–1826 (2018).

    Google Scholar 

  • 17.

    Thorp, J. H., Thoms, M. C. & Delong, M. D. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. River Res. Appl. 22, 123–147 (2006).

    Google Scholar 

  • 18.

    Brucet, S. et al. Fish diversity in European lakes: geographical factors dominate over anthropogenic pressures. Freshw. Biol. 58, 1779–1793 (2013).

    Google Scholar 

  • 19.

    Feld, C. K. et al. Disentangling the effects of land use and geo-climatic factors on diversity in European freshwater ecosystems. Ecol. Indic. 60, 71–83 (2016).

    Google Scholar 

  • 20.

    European Waters: Assessment of Status and Pressures 2018 (European Environment Agency, 2018); https://www.eea.europa.eu/publications/state-of-water/

  • 21.

    Jeppesen, E. et al. Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).

    CAS  Google Scholar 

  • 22.

    Hering, D. et al. Assessment of European rivers with diatoms, macrophytes, invertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshw. Biol. 51, 1757–1785 (2006).

    Google Scholar 

  • 23.

    Griffen, B. D., Belgrad, B. A., Cannizzo, Z. J., Knotts, E. R. & Hancock, E. R. Rethinking our approach to multiple stressor studies in marine environments. Mar. Ecol. Prog. Ser. 543, 273–281 (2016).

    Google Scholar 

  • 24.

    Davies, B. R., Biggs, J., Williams, P. J., Lee, J. T. & Thompson, S. A comparison of the catchment sizes of rivers, streams, ponds, ditches and lakes: implications for protecting aquatic biodiversity in an agricultural landscape. Hydrobiologia 597, 7–17 (2008).

    Google Scholar 

  • 25.

    Fuller, I. C. & Death, R. G. The science of connected ecosystems: what is the role of catchment-scale connectivity for healthy river ecology? Land Degrad. Dev. 29, 1413–1426 (2018).

    Google Scholar 

  • 26.

    Benda, L. et al. The network dynamics hypothesis: how channel networks structure riverine habitats. Bioscience 54, 413–427 (2004).

    Google Scholar 

  • 27.

    Liess, M. et al. Effects of Pesticides in the Field (Society of Environmental Toxicology and Chemistry, 2005).

  • 28.

    Price, K. J. & Carrick, H. J. Effects of experimental nutrient loading on phosphorus uptake by biofilms: evidence for nutrient saturation in mid-Atlantic streams. Freshw. Sci. 35, 503–517 (2016).

    Google Scholar 

  • 29.

    McCall, S. J., Hale, M. S., Smith, J. T., Read, D. S. & Bowes, M. J. Impacts of phosphorus concentration and light intensity on river periphyton biomass and community structure. Hydrobiologia 792, 315–330 (2017).

    CAS  Google Scholar 

  • 30.

    Birk, S. in Multiple Stress in River Ecosystems: Status, Impacts and Prospects for the Future (eds Sabater, S. et al.) 235–253 (Academic Press, 2019); https://doi.org/10.1016/B978-0-12-811713-2.00014-5

  • 31.

    Birk, S. et al. Three hundred ways to assess Europe’s surface waters: an almost complete overview of biological methods to implement the Water Framework Directive. Ecol. Indic. 18, 31–41 (2012).

    Google Scholar 

  • 32.

    Moss, B. et al. Allied attack: climate change and eutrophication. Inland Waters 1, 101–105 (2011).

    Google Scholar 

  • 33.

    Richardson, J. et al. The response of cyanobacteria and phytoplankton abundance to warming, extreme rainfall events and nutrient enrichment. Glob. Change Biol. 25, 3365–3380 (2019).

    Google Scholar 

  • 34.

    Jeppesen, E. et al. Impacts of climate warming on lake fish community structure and potential effects on ecosystem function. Hydrobiologia 646, 73–90 (2010).

    CAS  Google Scholar 

  • 35.

    Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–540 (2007).

    CAS  PubMed  Google Scholar 

  • 36.

    Graneli, W. in Encyclopedia of Lakes and Reservoirs (eds Bengtsson, L. et al.) 117–119 (Springer Netherlands, 2012); https://doi.org/10.1007/978-1-4020-4410-6_256

  • 37.

    Segner, H., Schmitt-Jansen, M. & Sabater, S. Assessing the impact of multiple stressors on aquatic biota: the receptor’s side matters. Environ. Sci. Technol. 48, 7690–7696 (2014).

    CAS  PubMed  Google Scholar 

  • 38.

    Baattrup-Pedersen, A. & Riis, T. Macrophyte diversity and composition in relation to substratum characteristics in regulated and unregulated Danish streams. Freshw. Biol. 42, 375–385 (1999).

    Google Scholar 

  • 39.

    Schneider, S. C. et al. Unravelling the effect of flow regime on macroinvertebrates and benthic algae in regulated versus unregulated streams. Ecohydrology 11, e1996 (2018).

    Google Scholar 

  • 40.

    de Zwart, D. & Posthuma, L. Complex mixture toxicity for single and multiple species: proposed methodologies. Environ. Toxicol. Chem. 24, 2665–2676 (2005).

    PubMed  Google Scholar 

  • 41.

    Busch, W. et al. Micropollutants in European rivers: a mode of action survey to support the development of effect-based tools for water monitoring. Environ. Toxicol. Chem. 35, 1887–1899 (2016).

    CAS  PubMed  Google Scholar 

  • 42.

    Malaj, E. et al. Organic chemicals jeopardize the health of freshwater ecosystems on the continental scale. Proc. Natl Acad. Sci. USA 111, 9549–9554 (2014).

    CAS  PubMed  Google Scholar 

  • 43.

    Hering, D. et al. Managing aquatic ecosystems and water resources under multiple stress—an introduction to the MARS project. Sci. Total Environ. 503, 10–21 (2015).

    PubMed  Google Scholar 

  • 44.

    Moe, S. J., Dudley, B. & Ptacnik, R. REBECCA databases: experiences from compilation and analyses of monitoring data from 5,000 lakes in 20 European countries. Aquat. Ecol. 42, 183–201 (2008).

    CAS  Google Scholar 

  • 45.

    Moe, S. J., Schmidt-Kloiber, A., Dudley, B. J. & Hering, D. The WISER way of organising ecological data from European rivers, lakes, transitional and coastal waters. Hydrobiologia 704, 11–28 (2013).

    Google Scholar 

  • 46.

    Sabater, S., Ludwig, R. & Elosegi, A. in Multiple Stress in River Ecosystems: Status, Impacts and Prospects for the Future (eds Sabater, S. et al.) 1–22 (Academic Press, 2019); https://doi.org/10.1016/B978-0-12-811713-2.00001-7

  • 47.

    Liess, M. & von der Ohe, P. C. Analyzing effects of pesticides on invertebrate communities in streams. Environ. Toxicol. 24, 954–965 (2005).

    CAS  Google Scholar 

  • 48.

    von der Ohe, P. C. & Goedkoop, W. Distinguishing the effects of habitat degradation and pesticide stress on benthic invertebrates using stressor-specific metrics. Sci. Total Environ. 444, 480–490 (2013).

    PubMed  Google Scholar 

  • 49.

    Lyche Solheim, A. et al. A new broad typology for rivers and lakes in Europe: development and application for large-scale environmental assessments. Sci. Total Environ. 697, 134043 (2019).

    CAS  PubMed  Google Scholar 

  • 50.

    Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. B 26, 211–252 (1964).

    Google Scholar 

  • 51.

    R Core Team R: A Language and Environment for Statistical Computing v.3.6.1 (R Foundation for Statistical Computing, 2019); http://www.r-project.org/index.html

  • 52.

    Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography (Cop.) 30, 609–628 (2007).

    Google Scholar 

  • 53.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 


  • Source: Ecology - nature.com

    Tiny sand grains trigger massive glacial surges

    Startup with MIT roots develops lightweight solar panels