in

Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought

  • 1.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  • 2.

    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).

    Google Scholar 

  • 3.

    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).

    Google Scholar 

  • 4.

    Anderegg, W. R. L. et al. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl Acad. Sci. USA 109, 233–237 (2012).

    CAS  PubMed  Google Scholar 

  • 5.

    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).

    CAS  PubMed  Google Scholar 

  • 6.

    Charney, N. D. et al. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecol. Lett. 19, 1119–1128 (2016).

    PubMed  Google Scholar 

  • 7.

    Carnicer, J. et al. Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by multidecadal ocean surface temperatures. Glob. Change Biol. 25, 2825–2840 (2019).

    Google Scholar 

  • 8.

    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

    PubMed  Google Scholar 

  • 9.

    Gazol, A. et al. Forest resilience to drought varies across biomes. Glob. Change Biol. 24, 2143–2158 (2018).

    Google Scholar 

  • 10.

    Huang, M., Wang, X., Keenan, T. F. & Piao, S. Drought timing influences the legacy of tree growth recovery. Glob. Change Biol. 24, 3546–3559 (2018).

    Google Scholar 

  • 11.

    García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).

    PubMed  Google Scholar 

  • 12.

    Tei, S. et al. Tree-ring analysis and modeling approaches yield contrary response of circumboreal forest productivity to climate change. Glob. Change Biol. 23, 5179–5188 (2017).

    Google Scholar 

  • 13.

    Jiang, P. et al. Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nat. Commun. 10, 195 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Gedalof, Z. & Berg, A. A. Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob. Biogeochem. Cycles 24, GB3027 (2010).

    Google Scholar 

  • 15.

    Peñuelas, J., Canadell, J. G. & Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 20, 597–608 (2011).

    Google Scholar 

  • 16.

    Swann, A. L. S., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proc. Natl Acad. Sci. USA 113, 10019–10024 (2016).

    CAS  PubMed  Google Scholar 

  • 17.

    Liu, Y. et al. Increasing atmospheric humidity and CO2 concentration alleviate forest mortality risk. Proc. Natl Acad. Sci. USA 114, 9918–9923 (2017).

    CAS  PubMed  Google Scholar 

  • 18.

    Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    Google Scholar 

  • 19.

    van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).

    PubMed  Google Scholar 

  • 20.

    Warren, J. M., Norby, R. J., Wullschleger, S. D. & Oren, R. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130 (2011).

    PubMed  Google Scholar 

  • 21.

    Ogasa, M., Miki, N. H., Murakami, Y. & Yoshikawa, K. Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species. Tree Physiol. 33, 335–344 (2013).

    PubMed  Google Scholar 

  • 22.

    Martin-StPaul, N., Delzon, S. & Cochard, H. Plant resistance to drought depends on timely stomatal closure. Ecol. Lett. 20, 1437–1447 (2017).

    PubMed  Google Scholar 

  • 23.

    Matheny, A. M., Mirfenderesgi, G. & Bohrer, G. Trait-based representation of hydrological functional properties of plants in weather and ecosystem models. Plant Divers. 39, 1–12 (2017).

    PubMed  Google Scholar 

  • 24.

    Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28 (2018).

    PubMed  Google Scholar 

  • 25.

    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538 (2018).

    CAS  PubMed  Google Scholar 

  • 26.

    Babst, F. et al. A tree-ring perspective on the terrestrial carbon cycle. Oecologia 176, 307–322 (2014).

    PubMed  Google Scholar 

  • 27.

    Wu, X. et al. Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Glob. Change Biol. 24, 504–516 (2018).

    Google Scholar 

  • 28.

    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    CAS  PubMed  Google Scholar 

  • 29.

    Johnson, D. M., Mcculloh, K. A., Woodruff, D. R. & Meinzer, F. C. Plant science hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different? Plant Sci. 195, 48–53 (2012).

    CAS  PubMed  Google Scholar 

  • 30.

    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    CAS  PubMed  Google Scholar 

  • 31.

    Carnicer, J., Barbeta, A., Sperlich, D., Coll, M. & Peñuelas, J. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 409 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of Northern Hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).

    Google Scholar 

  • 33.

    D’Orangeville, L. et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Change Biol. 24, 2339–2351 (2018).

    Google Scholar 

  • 34.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    CAS  PubMed  Google Scholar 

  • 35.

    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl Acad. Sci. USA 114, E10937–E10946 (2017).

  • 36.

    Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148 (2011).

    PubMed  Google Scholar 

  • 37.

    Greenwood, S. et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett. 20, 539–553 (2017).

    PubMed  Google Scholar 

  • 38.

    Meinzer, F. C. et al. Maximum height in a conifer is associated with conflicting requirements for xylem design. Proc. Natl Acad. Sci. USA 105, 12069–12074 (2008).

    PubMed  Google Scholar 

  • 39.

    Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).

    CAS  Google Scholar 

  • 40.

    Brodribb, T. J., McAdam, S. A. M., Jordan, G. J. & Martins, S. C. V. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc. Natl Acad. Sci. USA 111, 14489–14493 (2014).

    CAS  PubMed  Google Scholar 

  • 41.

    Duan, H. et al. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature. Tree Physiol. 35, 756–770 (2015).

    CAS  PubMed  Google Scholar 

  • 42.

    Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat. Ecol. Evol. 3, 400–406 (2019).

    PubMed  Google Scholar 

  • 43.

    Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Change Biol. 23, 891–905 (2017).

    Google Scholar 

  • 44.

    Yin, J. & Bauerle, T. L. A global analysis of plant recovery performance from water stress. Oikos 126, 1377–1388 (2017).

    Google Scholar 

  • 45.

    Anderegg, W. R. L. et al. Woody plants optimise stomatal behaviour relative to hydraulic risk. Ecol. Lett. 21, 968–977 (2018).

    PubMed  Google Scholar 

  • 46.

    Gessler, A., Schaub, M. & McDowell, N. G. The role of nutrients in drought-induced tree mortality and recovery. New Phytol. 214, 513–520 (2017).

    CAS  PubMed  Google Scholar 

  • 47.

    Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).

    CAS  PubMed  Google Scholar 

  • 48.

    Sohn, J. A., Saha, S. & Bauhus, J. Potential of forest thinning to mitigate drought stress: a meta-analysis. For. Ecol. Manage. 380, 261–273 (2016).

    Google Scholar 

  • 49.

    Trouvé, R., Bontemps, J. D., Collet, C., Seynave, I. & Lebourgeois, F. Radial growth resilience of sessile oak after drought is affected by site water status, stand density, and social status. Trees 31, 517–529 (2017).

    Google Scholar 

  • 50.

    Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Google Scholar 

  • 51.

    Franks, P. J. et al. Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytol. 197, 1077–1094 (2013).

    CAS  PubMed  Google Scholar 

  • 52.

    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).

    CAS  PubMed  Google Scholar 

  • 53.

    Frank, D. C. et al. Water-use efficiency and transpiration across European forests during the Anthropocene. Nat. Clim. Change 5, 579–583 (2015).

    CAS  Google Scholar 

  • 54.

    Drake, B. L., Hanson, D. T., Lowrey, T. K. & Sharp, Z. D. The carbon fertilization effect over a century of anthropogenic CO2 emissions: higher intracellular CO2 and more drought resistance among invasive and native grass species contrasts with increased water use efficiency for woody plants in the US Southwest. Glob. Change Biol. 23, 782–792 (2017).

    Google Scholar 

  • 55.

    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).

    CAS  PubMed  Google Scholar 

  • 56.

    Niinemets, Ü., Flexas, J. & Peñuelas, J. Evergreens favored by higher responsiveness to increased CO2. Trends Ecol. Evol. 26, 136–142 (2011).

    PubMed  Google Scholar 

  • 57.

    Tor-ngern, P. et al. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy. New Phytol 205, 518–525 (2015).

    CAS  PubMed  Google Scholar 

  • 58.

    Voelker, S. L. et al. A dynamic leaf gas‐exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Glob. Change Biol. 22, 889–902 (2016).

    Google Scholar 

  • 59.

    Domec, J.-C. et al. Acclimation of leaf hydraulic conductance and stomatal conductance of Pinus taeda (loblolly pine) to long-term growth in elevated CO2 (free-air CO2 enrichment) and N-fertilization. Plant Cell Environ. 32, 1500–1512 (2009).

    CAS  PubMed  Google Scholar 

  • 60.

    Domec, J.-C., Schafer, K., Oren, R., Kim, H. S. & McCarthy, H. R. Variable conductivity and embolism in roots and branches of four contrasting tree species and their impacts on whole-plant hydraulic performance under future atmospheric CO2 concentration. Tree Physiol. 30, 1001–1015 (2010).

    CAS  PubMed  Google Scholar 

  • 61.

    Domec, J. C., Smith, D. D. & McCulloh, K. A. A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: implications for whole‐plant water use efficiency and resistance to drought. Plant Cell Environ. 40, 921–937 (2017).

    CAS  PubMed  Google Scholar 

  • 62.

    McDowell, N. G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051–1059 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol. 200, 304–321 (2013).

    CAS  PubMed  Google Scholar 

  • 64.

    Mitchell, P. J., O’Grady, A. P., Hayes, K. R. & Pinkard, E. A. Exposure of trees to drought-induced die-off is defined by a common climatic threshold across different vegetation types. Ecol. Evol. 4, 1088–1101 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Choat, B. et al. Triggers of tree mortality under drought drought and forest mortality. Nature 558, 531–539 (2018).

    CAS  PubMed  Google Scholar 

  • 66.

    Andreu-Hayles, L. et al. Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Glob. Change Biol. 17, 2095–2112 (2011).

    Google Scholar 

  • 67.

    Girardin, M. P., Bouriaud, O., Hogg, E. H., Kurz, W. & Zimmermann, N. E. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).

    CAS  PubMed  Google Scholar 

  • 68.

    Zhao, S. et al. The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J. Biogeogr. 46, 355–368 (2019).

    Google Scholar 

  • 69.

    Gao, S. et al. Dynamic responses of tree-ring growth to multiple dimensions of drought. Glob. Change Biol. 24, 5380–5390 (2018).

    Google Scholar 

  • 70.

    Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–83 (2007).

    CAS  PubMed  Google Scholar 

  • 71.

    Babst, F. et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 5, eaat4313 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 72.

    Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).

    CAS  Google Scholar 

  • 73.

    Bunn, A. G. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124 (2008).

    Google Scholar 

  • 74.

    Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Springer Science & Business Media, 2013).

  • 75.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  • 76.

    Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).

    Google Scholar 

  • 77.

    Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded harmonized world soil database v1.2. http://daac.ornl.gov (Oak Ridge National Laboratory Distributed Active Archive Center, 2014).

  • 78.

    Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    CAS  PubMed  Google Scholar 

  • 79.

    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021 (2011).

  • 80.

    Zanne, A. E. et al. Global wood density database. Dryad https://doi.org/10.5061/dryad.234/1 (2009).

  • 81.

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).

    PubMed  Google Scholar 

  • 82.

    Ridgeway, G. Generalized Boosted Models: A guide to the gbm package. R version 2.1.5. https://cran.r-project.org/web/packages/gbm/index.html (2007).

  • 83.

    Fang, O. & Zhang, Q. B. Tree resilience to drought increases in the Tibetan Plateau. Glob. Change Biol. 25, 245–253 (2019).

    Google Scholar 

  • 84.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    CAS  PubMed  Google Scholar 

  • 85.

    Brienen, R. J. W. et al. Plot Data from: Long-term Decline of the Amazon Carbon Sink https://doi.org/10.5521/ForestPlots.net/2014_4 (Forest Plots, 2014).


  • Source: Ecology - nature.com

    Tiny sand grains trigger massive glacial surges

    Startup with MIT roots develops lightweight solar panels