in

Long-term effects of neonicotinoid insecticides on ants

  • 1.

    Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).

    CAS  PubMed  Google Scholar 

  • 2.

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).

    CAS  PubMed  Google Scholar 

  • 4.

    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. B 274, 303–313 (2007).

    Google Scholar 

  • 5.

    Lavelle, P. et al. Soil invertebrates and ecosystem services. Eur. J. Soil Biol. 42, 3–15 (2006).

    Google Scholar 

  • 6.

    Stanley, D. A. et al. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Chagnon, M. et al. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ. Sci. Pollut. Res. 22, 119–134 (2015).

    CAS  Google Scholar 

  • 8.

    Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).

    Google Scholar 

  • 9.

    Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102 (2015).

    CAS  Google Scholar 

  • 10.

    Wood, T. J. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. Environ. Sci. Pollut. Res. 24, 17285–17325 (2017).

    CAS  Google Scholar 

  • 11.

    Humann-Guilleminot, S. et al. A nation-wide survey of neonicotinoid insecticides in agricultural land with implications for agri-environment schemes. J. Appl. Ecol. 56, 1502–1514 (2019).

    Google Scholar 

  • 12.

    Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).

    Google Scholar 

  • 13.

    Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).

    PubMed  Google Scholar 

  • 14.

    Straub, L. et al. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc. R. Soc. Lond. B 283, 20160506 (2016).

    Google Scholar 

  • 15.

    Henry, M. et al. A common pesticide decreases foraging success and survival in honey bees. Science 336, 348–350 (2012).

    CAS  PubMed  Google Scholar 

  • 16.

    Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual-and colony-level traits in bees. Nature 491, 105 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Sandrock, C. et al. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS ONE 9, e103592 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 18.

    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253 (1997).

    CAS  Google Scholar 

  • 19.

    Adhikari, K. & Hartemink, A. E. Linking soils to ecosystem services—a global review. Geoderma 262, 101–111 (2016).

    CAS  Google Scholar 

  • 20.

    Pisa, L. et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. Environ. Sci. Pollut. Res. Int. https://doi.org/10.1007/s11356-017-0341-3 (2017).

  • 21.

    Rondeau, G. et al. Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Sci. Rep. 4, 5566 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Sánchez-Bayo, F. & Tennekes, H. A. Time-cumulative toxicity of neonicotinoids: experimental evidence and implications for environmental risk assessments. Int. J. Environ. Res. Public Health 17, 1629 (2020).

    PubMed Central  Google Scholar 

  • 23.

    Rust, M. K., Reierson, D. A. & Klotz, J. H. Delayed toxicity as a critical factor in the efficacy of aqueous baits for controlling Argentine ants (Hymenoptera: Formicidae). J. Econ. Entomol. 97, 1017–1024 (2004).

    CAS  PubMed  Google Scholar 

  • 24.

    Straub, L. et al. Neonicotinoids and ectoparasitic mites synergistically impact honeybees. Sci. Rep. 9, 8159 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 25.

    Dively, G. P., Embrey, M. S., Kamel, A., Hawthorne, D. J. & Pettis, J. S. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS ONE 10, e0118748 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Keller, L. & Genoud, M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389, 958 (1997).

    CAS  Google Scholar 

  • 27.

    Kutter, H. & Stumper R. Hermann Appel, ein leidgeadelter Entomologe (1892–1966). in Proceedings of the VI Congress of the International Union for the Study of Social Insects (eds Ernst, E., Frauchiger, L., Hauschteck-Jungen, E., Jungen, H., Leuthold, R., Maurizio, A., Ruppli, E. & Tschumi P.), 275–279 (Organizing Committee of the VI Congress IUSSI, Bern, 1969).

  • 28.

    Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7, e29268 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Seifert, B. Die Ameisen Mittel- und Nordeuropas. (Lutra Verlags und Vertriebsgesellschaft, 2007).

  • 30.

    Sandrock, C. et al. Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agr. For. Entomol. 16, 119–128 (2014).

    Google Scholar 

  • 31.

    Rust, M. K. et al. Laboratory and field evaluations of polyacrylamide hydrogel baits against Argentine ants (Hymenoptera: Formicidae). J. Econ. Entomol. 108, 1228–1236 (2015).

    CAS  PubMed  Google Scholar 

  • 32.

    Jung, J.-K., Jung, C. & Koh, S.-H. Lethal and sublethal effects of thiacloprid on non-target carpenter ant, Camponotus japonicus Mayr (Hymenoptera: Formicidae). J. Asia-Pac. Entomol. 21, 1321–1325 (2018).

    Google Scholar 

  • 33.

    Thiel, S. & Köhler, H.-R. A sublethal imidacloprid concentration alters foraging and competition behaviour of ants. Ecotoxicology 25, 814–823 (2016).

    CAS  PubMed  Google Scholar 

  • 34.

    Wang, L., Zeng, L. & Chen, J. Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Sci. Rep. 5, 17938 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). Scientific Opinion addressing the state of the science on risk assessment of plant protection products for in-soil organisms. EFSA J. 15, 4690 (2017).

    Google Scholar 

  • 36.

    Organization for Economic Cooperation and Development (OECD). OECD Guidelines for the Testing of Chemicals, Section 2 – Effects on Biotic Systems. (OECD Publishing, 2019).

  • 37.

    European Food Safety Authority. EFSA Guidance document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. 11, 3295 (2013).

    Google Scholar 

  • 38.

    EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues). Scientific Opinion addressing the state of the science on risk assessment of plant protection products for non‐target arthropods. EFSA J. 13, 3996 (2015).

    Google Scholar 

  • 39.

    Del Toro, I., Ribbons, R. R. & Pelini, S. L. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. N. 17, 133–146 (2012).

    Google Scholar 

  • 40.

    Jouquet, P., Dauber, J., Lagerlof, J., Lavelle, P. & Lepage, M. Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Appl. Soil Ecol. 32, 153–164 (2006).

    Google Scholar 

  • 41.

    Cerdà, A. & Jurgensen, M. The influence of ants on soil and water losses from an orange orchard in eastern Spain. J. Appl. Entomol. 132, 306–314 (2008).

    Google Scholar 

  • 42.

    Frouz, J., Holec, M. & Kalcik, J. The effect of Lasius niger (Hymenoptera, Formicidae) ant nest on selected soil chemical properties. Pedobiologia 47, 205–212 (2003).

    CAS  Google Scholar 

  • 43.

    Dostal, P., Breznova, M., Kozlickova, V., Herben, T. & Kovar, P. Ant-induced soil modification and its effect on plant below-ground biomass. Pedobiologia 49, 127–137 (2005).

    CAS  Google Scholar 

  • 44.

    Wagner, D. & Jones, J. B. The impact of harvester ants on decomposition, N mineralization, litter quality, and the availability of N to plants in the Mojave Desert. Soil Biol. Biochem. 38, 2593–2601 (2006).

    CAS  Google Scholar 

  • 45.

    Wagner, D. & Nicklen, E. F. Ant nest location, soil nutrients and nutrient uptake by ant-associated plants: does extrafloral nectar attract ant nests and thereby enhance plant nutrition? J. Ecol. 98, 614–624 (2010).

    Google Scholar 

  • 46.

    Jilkova, V. & Frouz, J. Contribution of ant and microbial respiration to CO2 emission from wood ant (Formica polyctena) nests. Eur. J. Soil Biol. 60, 44–48 (2014).

    Google Scholar 

  • 47.

    Way, M. J. & Khoo, K. C. Role of ants in pest-management. Annu. Rev. Entomol. 37, 479–503 (1992).

    Google Scholar 

  • 48.

    Rostás, M. & Tautz, J. Ants as pollinators of plants and the role of floral scents. in All flesh is grass (eds Seckback, J. & Dubinsky Z.), 149–161 (Springer, 2010).

  • 49.

    Nauen, R., Ebbinghaus-Kintscher, U., Salgado, V. L. & Kaussmann, M. Thiamethoxam is a neonicotinoid precursor converted to clothianidin in insects and plants. Pestic. Biochem. Phys. 76, 55–69 (2003).

    CAS  Google Scholar 

  • 50.

    Tomizawa, M. & Casida, J. E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu. Rev. Entomol. 48, 339–364 (2003).

    CAS  PubMed  Google Scholar 

  • 51.

    Wiesner, P. & Kayser, H. Characterization of nicotinic acetylcholine receptors from the insects Aphis craccivora, Myzus persicae, and Locusta migratoria by radioligand binding assays: relation to thiamethoxam action. J. Biochem. Mol. Toxicol. 14, 221–230 (2000).

    CAS  PubMed  Google Scholar 

  • 52.

    Diez, L., Lejeune, P. & Detrain, C. Keep the nest clean: survival advantages of corpse removal in ants. Biol. Lett. 10, 20140306 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Hölldobler, B. & Wilson, E. O. The ants. (Springer, 1990).

  • 54.

    Liess, M. et al. Culmination of low-dose pesticide effects. Environ. Sci. Technol. 47, 8862–8868 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Cerda, X., Arnan, X. & Retana, J. Is competition a significant hallmark of ant (Hymenoptera: Formicidae) ecology. Myrmecol. N. 18, 131–147 (2013).

    Google Scholar 

  • 56.

    Dornhaus, A. & Franks, N. R. Colony size affects collective decision-making in the ant Temnothorax albipennis. Insect Soc. 53, 420–427 (2006).

    Google Scholar 

  • 57.

    Ruel, C., Cerda, X. & Boulay, R. Behaviour-mediated group size effect constrains reproductive decisions in a social insect. Anim. Behav. 84, 853–860 (2012).

    Google Scholar 

  • 58.

    Palmer, T. M. Wars of attrition: colony size determines competitive outcomes in a guild of African acacia ants. Anim. Behav. 68, 993–1004 (2004).

    Google Scholar 

  • 59.

    Sommer, K. & Hölldobler, B. Colony founding by queen association and determinants of reduction in queen number in the ant Lasius niger. Anim. Behav. 50, 287–294 (1995).

    Google Scholar 

  • 60.

    Boulay, R. et al. Production of sexuals in a fission-performing ant: dual effects of queen pheromones and colony size. Behav. Ecol. Sociobiol. 61, 1531–1541 (2007).

    Google Scholar 

  • 61.

    Boomsma, J., Van der Lee, G. & Van der Have, T. On the production ecology of Lasius niger (Hymenoptera: Formicidae) in successive coastal dune valleys. J. Anim. Ecol. 51, 975–991 (1982).

    Google Scholar 

  • 62.

    T O’Neal, S., Anderson, T. D. & Wu-Smart, J. Y. Interactions between pesticides and pathogen susceptibility in honey bees. Curr. Opin. Insect Sci. 26, 57–62 (2018).

    Google Scholar 

  • 63.

    Tosi, S., Nieh, J. C., Sgolastra, F., Cabbri, R. & Medrzycki, P. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proc. R. Soc. Lond. B 284, 20171711 (2017).

    Google Scholar 

  • 64.

    LeBoeuf, A. C. et al. Oral transfer of chemical cues, growth proteins and hormones in social insects. Elife 5, e20375 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Lucchetti, M. A., Kilchenmann, V., Glauser, G., Praz, C. & Kast, C. Nursing protects honeybee larvae from secondary metabolites of pollen. Proc. R. Soc. Lond. B 285, 20172849 (2018).

    Google Scholar 

  • 66.

    Dahlgren, L., Johnson, R. M., Siegfried, B. D. & Ellis, M. D. Comparative toxicity of acaricides to honey bee (Hymenoptera: Apidae) workers and queens. J. Econ. Entomol. 105, 1895–1902 (2012).

    CAS  PubMed  Google Scholar 

  • 67.

    European Food Safety Authority. Peer review of the pesticide risk assessment for bees for the active substance thiamethoxam considering the uses as seed treatments and granules. EFSA J. 16, e05179 (2018).

    Google Scholar 

  • 68.

    Whitehorn, P. R., Norville, G., Gilburn, A. & Goulson, D. Larval exposure to the neonicotinoid imidacloprid impacts adult size in the farmland butterfly Pieris brassicae. PeerJ 6, e4772 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 69.

    Blanckenhorn, W. U. The evolution of body size: what keeps organisms small? Q. Rev. Biol. 75, 385–407 (2000).

    CAS  PubMed  Google Scholar 

  • 70.

    Wilson, E. O. The insect societies. (Harvard University Press, 1971).

  • 71.

    Sorensen, A. A. & Vinson, S. Quantitative food distribution studies within laboratory colonies of the imported fire ant, Solenopsis invicta Buren. Insect Soc. 28, 129–160 (1981).

    Google Scholar 

  • 72.

    Li, X., Schuler, M. A. & Berenbaum, M. R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol. 52, 231–253 (2007).

    PubMed  Google Scholar 

  • 73.

    Matsuda, K., Ihara, M. & Sattelle, D. B. Neonicotinoid insecticides: molecular targets, resistance, and toxicity. Annu. Rev. Pharmacol. Toxicol. 60, 241–255 (2020).

    CAS  PubMed  Google Scholar 

  • 74.

    Gong, Y. & Diao, Q. Current knowledge of detoxification mechanisms of xenobiotic in honey bees. Ecotoxicology 26, 1–12 (2017).

    PubMed  Google Scholar 

  • 75.

    Arrese, E. L. & Soulages, J. L. Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Straub, L., Williams, G. R., Pettis, J., Fries, I. & Neumann, P. Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Curr. Opin. Insect Sci. 12, 109–112 (2015).

    Google Scholar 

  • 77.

    Rodrigues, M. A. & Flatt, T. Endocrine uncoupling of the trade-off between reproduction and somatic maintenance in eusocial insects. Curr. Opin. Insect Sci. 16, 1–8 (2016).

    PubMed  Google Scholar 

  • 78.

    Jemielity, S., Chapuisat, M., Parker, J. D. & Keller, L. Long live the queen: studying aging in social insects. Age 27, 241–248 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 79.

    Schwenke, R. A., Lazzaro, B. P. & Wolfner, M. F. Reproduction–immunity trade-offs in insects. Annu. Rev. Entomol. 61, 239–256 (2016).

    CAS  PubMed  Google Scholar 

  • 80.

    Harshman, L. G. & Zera, A. J. The cost of reproduction: the devil in the details. Trends Ecol. Evol. 22, 80–86 (2007).

    PubMed  Google Scholar 

  • 81.

    Limay‐Rios, V. et al. Neonicotinoid insecticide residues in soil dust and associated parent soil in fields with a history of seed treatment use on crops in southwestern Ontario. Environ. Toxicol. Chem. 35, 303–310 (2016).

    PubMed  Google Scholar 

  • 82.

    Schaafsma, A., Limay-Rios, V., Xue, Y., Smith, J. & Baute, T. Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario. Environ. Toxicol. Chem. 35, 295–302 (2016).

    CAS  PubMed  Google Scholar 

  • 83.

    Lachat, L. & Glauser, G. Development and Validation of an Ultra-Sensitive UHPLC–MS/MS Method for Neonicotinoid Analysis in Milk. J. Agr. Food Chem. 66, 8639–8646 (2018).

    CAS  Google Scholar 

  • 84.

    R Development Core Team. R: A language and environment for statistical computing. R Version 3.5.1. R Foundation for Statistical Computing. (Vienna, 2018). http://cran.r-project.org.

  • 85.

    Therneau, T. A Package for Survival Analysis in S. Version 2.38. http://cran.r-project.org/package=survival (2015).

  • 86.

    Dinno, A. dunn.test: Dunn’s test of multiple comparisons using rank sums. Version 1.3.5. http://cran.r-project.org/package=dunn.test (2017).

  • 87.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    Transition to tall evergreens

    Characterization of the phenotypic and genotypic tolerance to abiotic stresses of natural populations of Heterorhabditis bacteriophora