in

Large-scale metabolic interaction network of the mouse and human gut microbiota

  • 1.

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  Article  Google Scholar 

  • 2.

    Mackie, R. I., White, B. A. & Isaacson, R. E. Gastrointestinal Microbiology (Chapman & Hall, New York, 1997).

  • 3.

    Wang, J. et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl. Acad. Sci. USA 111, E2703–E2710 (2014).

    CAS  Article  Google Scholar 

  • 4.

    Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  Google Scholar 

  • 5.

    Manichanh, C., Borruel, N., Casellas, F. & Guarner, F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol 9, 599–608 (2012).

    CAS  Article  Google Scholar 

  • 6.

    Louis, P., Hold, G. L. & Flint, H. J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12, 661–672 (2014).

    CAS  Article  Google Scholar 

  • 7.

    Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).

    ADS  CAS  Article  Google Scholar 

  • 8.

    Blaut, M. Ecology and physiology of the intestinal tract. Curr. Top. Microbiol. Immunol. 358, 247–272 (2013).

    PubMed  Google Scholar 

  • 9.

    Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Sung, J. et al. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat. Commun. 8, 15393 (2017).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Abubucker, S. et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. Plos Comput. Biol. 8, e1002358 (2012).

    CAS  Article  Google Scholar 

  • 12.

    Greenblum, S., Turnbaugh, P. J. & Borenstein, E. Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 109, 594–599 (2012).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Levy, R. & Borenstein, E. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. Proc. Natl. Acad. Sci. USA 110, 12804–12809 (2013).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl. Acad. Sci. USA 112, 6449–6454 (2015).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Heinken, A. & Thiele, I. Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework. Gut Microbes 6, 120–130 (2015).

    CAS  Article  Google Scholar 

  • 16.

    Kettle, H., Louis, P., Holtrop, G., Duncan, S. H. & Flint, H. J. Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ. Microbiol. 17, 1615–1630 (2015).

    CAS  Article  Google Scholar 

  • 17.

    Magnúsdóttir, S. et al. Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol. 35, 81–89 (2017).

    Article  Google Scholar 

  • 18.

    Tramontano, M. et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat. Microbiol 3, 514–522 (2018).

    CAS  Article  Google Scholar 

  • 19.

    Babaei, P., Shoaie, S., Ji, B. & Nielsen, J. Challenges in modeling the human gut microbiome. Nat. Biotechnol. 36, 682–686 (2018).

    CAS  Article  Google Scholar 

  • 20.

    Magnúsdóttir, S., Heinken, A., Fleming, R. M. T. & Thiele, I. Reply to “Challenges in modeling the human gut microbiome”. Nat. Biotechnol. 36, 686–691 (2018).

    Article  Google Scholar 

  • 21.

    Bleich, A. & Fox, J. The mammalian microbiome and its importance in laboratory animal research. ILAR J. 56, 153–158 (2015).

    CAS  Article  Google Scholar 

  • 22.

    Nelson, K. E. An update on the status of current research on the mammalian microbiome. ILAR J. 56, 163–168 (2015).

    CAS  Article  Google Scholar 

  • 23.

    Nguyen, T. L. A., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model Mech. 8, 1–16 (2015).

    CAS  Article  Google Scholar 

  • 24.

    Pickard, J. M. et al. Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness. Nature 514, 638–641 (2014).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Cullender, T. C. et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14, 571–581 (2013).

    CAS  Article  Google Scholar 

  • 26.

    Langille, M. G. et al. Microbial shifts in the aging mouse gut. Microbiome 2, 50 (2014).

    Article  Google Scholar 

  • 27.

    Rooks, M. G. et al. Gut microbiome composition and function in experimental colitis during active disease and treatment-induced remission. ISME J. 8, 1403–1417 (2014).

    CAS  Article  Google Scholar 

  • 28.

    Benson, A. K. et al. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. USA 107, 18933–18938 (2010).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Linnenbrink, M., Wang, J., Hardouin, E. A., Künzel, S., Metzler, D. & Baines, J. F. The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol. Ecol. 22, 1904–1916 (2013).

    Article  Google Scholar 

  • 30.

    Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).

    CAS  Article  Google Scholar 

  • 31.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    CAS  Article  Google Scholar 

  • 32.

    Bouladoux, N., Harrison, O. J. & Belkaid, Y. The mouse model of infection with Citrobacter rodentium. Curr. Protoc. Immunol. 119, 19.15.1–19.15.25 (2017).

    Article  Google Scholar 

  • 33.

    Heinken, A., Sahoo, S., Fleming, R. M. T. & Thiele, I. Systems-level characterization of a host-microbe metabolic symbiosis in the mammalian gut. Gut Microbes 4, 28–40 (2013).

    Article  Google Scholar 

  • 34.

    Sung, J. et al. Data from: Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Dryad Digital Repository, https://doi.org/10.5061/dryad.mc1j9 (2017).

  • 35.

    Lim, R. et al. Data from: Large-scale metabolic interaction network of the mouse and human gut microbiota. Dryad Digital Repository, https://doi.org/10.5061/dryad.dr7sqv9v8 (2020).

  • 36.

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  Article  Google Scholar 

  • 37.

    Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    ADS  Article  Google Scholar 

  • 38.

    Kovatcheva-Datchary, P. et al. Simplified intestinal microbiota to study microbe-diet-host interactions in a mouse model. Cell Rep 26, 3772–3783 (2019).

    CAS  Article  Google Scholar 

  • 39.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Transition to tall evergreens

    Characterization of the phenotypic and genotypic tolerance to abiotic stresses of natural populations of Heterorhabditis bacteriophora