in

The dominant seagrass herbivore Sarpa salpa shifts its shoaling and feeding strategies as they grow

  • 1.

    Clark, W. & Mangel, M. The evolutionary advantages of group foraging. Theor. Popul. Biol. 75, 45–75 (1986).

    MathSciNet  MATH  Google Scholar 

  • 2.

    Bertram, B. C. R. Living in groups: predators and prey. in Behavioural Ecology: an Evolutionary Approach 221–248 (Blackwell Scientific, Oxford, 1978).

    Google Scholar 

  • 3.

    Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. B Biol. Sci. 274, 839–844 (2007).

    Google Scholar 

  • 4.

    Ward, P. & Zahavi, A. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis (Lond. 1859) 115, 517–534 (1973).

    Google Scholar 

  • 5.

    Arsenault, R. & Owen-smith, N. Facilitation versus competition in grazing herbivore. Oikos 97, 313–318 (2014).

    Google Scholar 

  • 6.

    McInnes, A. M., McGeorge, C., Ginsberg, S., Pichegru, L. & Pistorius, P. A. Group foraging increases foraging efficiency in a piscivorous diver, the African penguin. R. Soc. Open Sci. 4, 1–11 (2017).

    Google Scholar 

  • 7.

    Krause, J. & Godin, J. G. J. Predator preferences for attacking particular prey group sizes: consequences for predator hunting success and prey predation risk. Anim. Behav. 50, 465–473 (1995).

    Google Scholar 

  • 8.

    Hoare, D. J., Krause, J., Peuhkuri, N. & Godin, J. G. Body size and shoaling in fish. J. Fish Biol. 57, 1351–1366 (2000).

    Google Scholar 

  • 9.

    Croft, D. P. et al. Mechanisms underlying shoal composition in the Trinidadian guppy Poecilia reticulata. Oikos 100, 429–438 (2003).

    Google Scholar 

  • 10.

    Beauchamp, G. Does group foraging promote efficient exploitation of resources?. Oikos 111, 403–407 (2005).

    Google Scholar 

  • 11.

    Ioannou, C. C. et al. The effect of prey density on predators : conspicuousness and attack success are sensitive to spatial scale. Am. Nat. 173, 499–506 (2009).

    PubMed  Google Scholar 

  • 12.

    Landeau, L. & Terborgh, J. Oddity and the ‘confusion effect’ in predation. Anim. Behav. 34, 1372–1380 (1986).

    Google Scholar 

  • 13.

    Peukhuri, N. Size-assortative shoaling in fish: the effect of oddity on foraging behaviour. Anim. Behav. 54, 271–278 (1997).

    Google Scholar 

  • 14.

    Rodgers, G. M., Ward, J. R., Askwith, B. & Morrell, L. J. Balancing the dilution and oddity effects: Decisions depend on body size. PLoS ONE 6, 2–7 (2011).

    Google Scholar 

  • 15.

    Kelkar, N., Arthur, R., Marbà, N. & Alcoverro, T. Greener pastures? High-density feeding aggregations of green turtles precipitate species shifts in seagrass meadows. J. Ecol. 101, 1158–1168 (2013).

    Google Scholar 

  • 16.

    Christianen, M. J. A. et al. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proc. R. Soc. B Biol. Sci. 281, 20132890–20132890 (2014).

    Google Scholar 

  • 17.

    Strong, D. Are trophic cascades all wet ? Differentiation and donor-control in speciose ecosystems. Ecology 73, 747–754 (1992).

    Google Scholar 

  • 18.

    Jarman, P. J. The social organisation of antelope in relation to their ecology. Behaviour 48, 215–267 (1974).

    Google Scholar 

  • 19.

    Christensen, B. Predator foraging capabilities and prey antipredator behaviours: pre-versus postcapture constraints on size-dependent predator-prey interactions. Oikos 76, 368–380 (1996).

    Google Scholar 

  • 20.

    Sogard, S. M. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull. Mar. Sci. 60, 1129–1157 (1997).

    Google Scholar 

  • 21.

    Woodward, G. U. Y. & Hildrew, G. Body-size determinants of niche overlap and intraguild predation within a complex food web. J. Anim. 71, 1063–1074 (2002).

    Google Scholar 

  • 22.

    Radloff, F. G. T. & Du Toit, J. T. Large predators and their prey in a southern African savanna: a predator’s size determines its prey size range. J. Anim. Ecol. 73, 410–423 (2004).

    Google Scholar 

  • 23.

    Chase, J. M. Food web effects of prey size refugia: variable interactions and alternative stable equilibria. Am. Nat. 154, 559–570 (1999).

    PubMed  Google Scholar 

  • 24.

    King, R. B. Predicted and observed maximum prey size—snake size allometry. Funct. Ecol. 16, 766–772 (2002).

    Google Scholar 

  • 25.

    Owen-Smith, N. & Mills, M. G. L. Predator-prey size relationships in an African large-mammal food web. J. Anim. Ecol. 77, 173–183 (2008).

    PubMed  Google Scholar 

  • 26.

    Sala, E. Fish predators and scavengers of the sea urchin Paracentrotus lividus in protected areas of the north-west Mediterranean sea. Mar. Biol. 129, 531–539 (1997).

    Google Scholar 

  • 27.

    Pessarrodona, A., Boada, J., Pagès, J. F., Arthur, R. & Alcoverro, T. Consumptive and non-consumptive effects of predators vary with the ontogeny of their prey. Ecology 100, 1–13 (2019).

    Google Scholar 

  • 28.

    Mittelbach, G. G. Foraging efficiency and body size: a study of optimal diet and habitat use by bluegills. Ecology 62, 1370–1386 (1981).

    Google Scholar 

  • 29.

    Ward, A. & Webster, M. Sociality: The behaviour of group-living animals. Soc. Behav. Group Living Anim. https://doi.org/10.1007/978-3-319-28585-6 (2016).

    Article  Google Scholar 

  • 30.

    Alcoverro, T. & Mariani, S. Effects of sea urchin grazing on seagrass (Thalassodendron ciliatum) beds of a Kenyan lagoon. Mar. Ecol. Prog. Ser. 226, 255–263 (2002).

    ADS  Google Scholar 

  • 31.

    Eklöf, J. S. et al. Sea urchin overgrazing of seagrasses: a review of current knowledge on causes, consequences, and management. Estuar. Coast. Shelf Sci. 79, 569–580 (2008).

    ADS  Google Scholar 

  • 32.

    Dornhaus, A., Powell, S. & Bengston, S. Group size and its effects on collective organization. Annu. Rev. Entomol. 57, 123–141 (2011).

    PubMed  Google Scholar 

  • 33.

    Abecasis, D., Bentes, L. & Erzini, K. Movements of Sarpa salpa (Linnaeus, 1758) (Sparidae) in a coastal lagoon (Ria Formosa, Portugal). J. Appl. Ichthyol. 28, 126–129 (2012).

    Google Scholar 

  • 34.

    Jadot, C., Donnay, A., Acolas, M. L., Cornet, Y. & Bégout Anras, M. L. Activity patterns, home-range size, and habitat utilization of Sarpa salpa (Teleostei: Sparidae) in the Mediterranean Sea. ICES J. Mar. Sci. 63, 128–139 (2006).

    Google Scholar 

  • 35.

    Tomas, F., Cebrian, E. & Ballesteros, E. Differential herbivory of invasive algae by native fish in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 92, 27–34 (2011).

    ADS  Google Scholar 

  • 36.

    Vergés, A., Alcoverro, T. & Ballesteros, E. Role of fish herbivory in structuring the vertical distribution of canopy algae Cystoseira spp. in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 375, 1–11 (2009).

    ADS  Google Scholar 

  • 37.

    Verlaque, M. Relations entre Sarpa salpa (Téléostéen, Sparidae), les autres poissons brouteurs et le phytobenthos algal méditerranéen. Oceanol. Acta 13, 373–388 (1990).

    Google Scholar 

  • 38.

    Prado, P., Tomas, F., Alcoverro, T. & Romero, J. Extensive direct measurements of Posidonia oceanica defoliation confirm the importance of herbivory in temperate seagrass meadows. Mar. Ecol. Prog. Ser. 340, 63–71 (2007).

    ADS  Google Scholar 

  • 39.

    Planes, S., Raventos, N., Ferrari, B. & Alcoverro, T. Fish herbivory leads to shifts in seagrass posidonia oceanica investments in sexual reproduction. Mar. Ecol. Prog. Ser. 431, 205–213 (2011).

    ADS  Google Scholar 

  • 40.

    Pagès, J. F. et al. Indirect interactions in seagrasses: fish herbivores increase predation risk to sea urchins by modifying plant traits. Funct. Ecol. 26, 1015–1023 (2012).

    Google Scholar 

  • 41.

    Hureau, J. C., Bauchot, M. L., Tortonese, E. & Nielsen, J. Fishes of the North-Eastern Atlantic and the Mediterranean Vol. 1 (UNESCO, Paris, 1984).

    Google Scholar 

  • 42.

    Braum, E. Smith’s Sea fishes. Edited by M. M. Smith and P. C. Heemstra.–1047 pp. Berlin–Heidelberg – New York: Springer Verlag 1986. ISBN 3-540-16851-6. DM 198. Int. Rev. Gesamten Hydrobiol. Hydrogr. 72, 775–776 (1987).

    Google Scholar 

  • 43.

    Velimirov, B. Grazing of Sarpa salpa L. on Posidonia oceanica and utilization of soluble compounds. in International Workshop on Posidonia Oceanica Beds 1, 381–387 (GIS Posidonie Publ Marseille, 1984).

  • 44.

    Havelange, S., Lepoint, G., Dauby, P. & Bouquegneau, J. M. Feeding of the sparid fish Sarpa salpa in a seagrass ecosystem: diet and carbon flux. Mar. Ecol. 18, 289–297 (1997).

    ADS  Google Scholar 

  • 45.

    Criscoli, A., Colloca, F., Carpentieri, P., Belluscio, A. & Ardizzone, G. Observations on the reproductive cycle, age and growth of the salema, Sarpa salpa (Osteichthyes: Sparidae) along the western central coast of Italy. Sci. Mar. 70, 131–138 (2008).

    Google Scholar 

  • 46.

    Pallaoro, A., Dulčić, J., Matić-Skoko, S., Kraljević, M. & Jardas, I. Biology of the salema, Sarpa salpa (Pisces, Sparidae) from the middle-eastern Adriatic. J. Appl. Ichthyol. 24, 276–281 (2008).

    Google Scholar 

  • 47.

    Raventos, N., Ferrari, B. & Planes, S. Differences in population parameters and behaviour of the herbivorous fish Sarpa salpa between protected and unprotected seagrass meadows in the north-western Mediterranean. J. Mar. Biol. Assoc. U. K. 89, 1153–1159 (2009).

    Google Scholar 

  • 48.

    Mendez Villamil, M., Pajuelo, G., Ramos, A. & Coca, J. Aspects of the Life History of the Salema, Sarpa salpa (Pisces, Sparidae), off the Canarian Archipelago (Central-East Atlantic). Environ. Biol. Fishes 63, 183–192 (2002).

    Google Scholar 

  • 49.

    Prado, P., Farina, S., Tomas, F., Romero, J. & Alcoverro, T. Marine protection and meadow size alter fish herbivory in seagrass ecosystems. Mar. Ecol. Prog. Ser. 371, 11–21 (2008).

    ADS  Google Scholar 

  • 50.

    Tomas, F., Turon, X. & Romero, J. Seasonal and small-scale spatial variability of herbivory pressure on the temperate seagrass Posidonia oceanica. Mar. Ecol. Ser. 301, 95–107 (2005).

    Google Scholar 

  • 51.

    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

  • 52.

    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).

    Google Scholar 

  • 53.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Google Scholar 

  • 54.

    Breheny, P. & Burchett, W. Package ‘visreg’: visualization of regression models. R J. 9, 56–71 (2017).

    Google Scholar 

  • 55.

    Arthur, K. E., Boyle, M. C. & Limpus, C. J. Ontogenetic changes in diet and habitat use in green sea turtle (Chelonia mydas) life history. Mar. Ecol. Prog. Ser. 362, 303–311 (2008).

    ADS  Google Scholar 

  • 56.

    O’brien, C. J. Ontogenetic changes in the diet of juvenile brown tiger prawns Penaeus esculentus. Mar. Ecol. Prog. Ser. 112, 195–200 (1994).

    ADS  Google Scholar 

  • 57.

    Gning, N., Vidy, G. & Thiaw, O. T. Feeding ecology and ontogenic diet shifts of juvenile fish species in an inverse estuary: the Sine-Saloum Senegal. Estuar. Coast. Shelf Sci. 76, 395–403 (2008).

    ADS  Google Scholar 

  • 58.

    Prado, P., Alcoverro, T. & Romero, J. Seasonal response of Posidonia oceanica epiphyte assemblages to nutrient increase. Mar. Ecol. Prog. Ser. 359, 89–98 (2008).

    ADS  Google Scholar 

  • 59.

    Penry-Williams, I. L., Ioannou, C. C. & Taylor, M. I. The oddity effect drives prey choice but not necessarily attack time. Ethology 124, 496–503 (2018).

    Google Scholar 

  • 60.

    Breden, F., Lum, A. & Wassersug, R. Body size and orientation in aggregates of toad tadpoles Bufo woodhousei. Copeia 3, 672–680 (1982).

    Google Scholar 

  • 61.

    Sridhar, H. et al. Positive relationships between association strength and phenotypic similarity characterize the assembly of mixed-species bird flocks worldwide. Am. Nat. 180, 777–790 (2012).

    PubMed  Google Scholar 

  • 62.

    Meldrum, G. E. & Ruckstuhl, K. E. Mixed-sex group formation by bighorn sheep in winter: trading costs of synchrony for benefits of group living. Anim. Behav. 77, 919–929 (2009).

    Google Scholar 

  • 63.

    Weise, M. J., Harvey, J. T. & Costa, D. P. The role of body size in individual-based foraging strategies of a top marine predator. Ecology 91, 1004–1015 (2010).

    PubMed  Google Scholar 

  • 64.

    Carbone, C. & Houston, A. I. Patterns in the diving behaviour of the pochard, Aythya ferina: a test of an optimality model. Anim. Behav. 48, 457–465 (1994).

    Google Scholar 

  • 65.

    Scharf, F. S., Juanes, F. & Rountree, R. A. Predator size—prey size relationships of marine fish predators: Interspecific variation and effects of ontogeny and body size on trophic-niche breadth. Mar. Ecol. Prog. Ser. 208, 229–248 (2000).

    ADS  Google Scholar 

  • 66.

    Thompson, D. & Fedak, M. A. How long should a dive last? A simple model of foraging decisions by breath-hold divers in a patchy environment. Anim. Behav. 61, 287–296 (2001).

    Google Scholar 

  • 67.

    Jackson, J. B. C. Interspecific competition and species’ distributions: the ghosts of theories and data past. Integr. Comp. Biol. 21, 889–901 (1981).

    Google Scholar 

  • 68.

    Prado, P., Collier, C. J., Romero, J. & Alcoverro, T. Distinctive types of leaf tissue damage influence nutrient supply to growing tissues within seagrass shoots. Mar. Biol. 158, 1473–1482 (2011).

    CAS  Google Scholar 

  • 69.

    Keiser, C. N. & Pruitt, J. N. Personality composition is more important than group size in determining collective foraging behaviour in the wild. Proc. R. Soc. B Biol. Sci. 281, 20141424 (2014).

    Google Scholar 

  • 70.

    Jeanson, R., Fewell, J. H., Gorelick, R. & Bertram, S. M. Emergence of increased division of labor as a function of group size. Behav. Ecol. Sociobiol. 62, 289–298 (2007).

    Google Scholar 

  • 71.

    Walton, W. E., Easter, S. S. & Malinoski, C. Size-related change in the visual resolution of sunfish (Lepomis spp.). Can. J. Fish. Aquat. Sci. 51, 2017–2026 (1994).

    Google Scholar 

  • 72.

    Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013).

    Google Scholar 


  • Source: Ecology - nature.com

    Observed changes in dry-season water availability attributed to human-induced climate change

    Experimental study on the movement of heavy metal Zn in paddy soil under different irrigation quota of reclaimed water