in

Enzyme-catalysed mineralisation experiment study to solidify desert sands

  • 1.

    Middleton, N. & Thomas, D. S. G. World Atlas of Desertification 182 (Arnold, London, 1997).

    Google Scholar 

  • 2.

    Wang, T., Xue, X., Zhou, L. H. & Guo, J. Combating aeolian desertification in northern China. Land Degrad. Dev. 26, 118–132 (2015).

    Article  Google Scholar 

  • 3.

    Le Houérou, H. N. Biogeography of the arid steppeland north of the Sahara. J. Arid Environ. 48, 103–128 (2001).

    Article  Google Scholar 

  • 4.

    Mekuria, W. et al. Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. J. Arid Environ. 69, 270–284 (2007).

    ADS  Article  Google Scholar 

  • 5.

    Wang, F., Pan, X., Wang, D., Shen, C. & Lu, Q. Combating desertification in China: past, present and future. Land Use Policy 31, 311–313 (2013).

    Article  Google Scholar 

  • 6.

    Eslamian, S. & Eslamian, F. A. (eds) Handbook of Drought and Water Scarcity: Environmental Impacts and Analysis of Drought and Water Scarcity (CRC Press, Boca Raton, 2017).

    Google Scholar 

  • 7.

    Yang, Y. L., Squires, V., & Lu, Q. Global Alarm: Dust Storms and Sandstorms from the World’s Dry Lands 346 (UN Publication, 2002).

  • 8.

    McKendry, I. G. et al. Long-range transport of Asian dust to the Lower Fraser Valley, British Columbia, Canada. J. Geophys. Res. 106(D16), 18361–18370 (2001).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Uno, I. et al. Asian dust transported one full circuit around the globe. Nat. Geosci. 2(8), 557–560 (2009).

    ADS  CAS  Article  Google Scholar 

  • 10.

    Grainger, A. The Threatening Desert: Controlling Desertification (Routledge, London, 2013).

    Google Scholar 

  • 11.

    Deléglise, C., Loucougaray, G. & Alard, D. Effects of grazing exclusion on the spatial variability of subalpine plant communities: a multiscale approach. Basic Appl. Ecol. 12, 609–619 (2011).

    Article  Google Scholar 

  • 12.

    Liu, J. H., Wu, J. J., Su, H. B., Gao, Z. & Wu, Z. Effects of grazing exclusion in Xilin Gol grassland differ between regions. Ecol. Eng. 99, 271–281 (2017).

    Article  Google Scholar 

  • 13.

    Verdoodt, A., Mureithi, S. M., Ye, L. & Van, R. E. Chronosequence analysis of two enclosure management strategies in degraded rangeland of semi-arid Kenya. Agric. Ecosyst. Environ. 129, 332–339 (2009).

    Article  Google Scholar 

  • 14.

    Witt, G. B., Noël, M. V., Bird, M. I., Beeton, R. J. S. & Menzies, N. W. Carbon sequestration and biodiversity restoration potential of semi-arid mulga lands of Australia interpreted from long-term grazing exclosures. Agric. Ecosyst. Environ. 141, 108–118 (2011).

    Article  Google Scholar 

  • 15.

    Sasaki, T. et al. Rainfall variability may modify the effects of long-term exclosure on vegetation in Mandalgobi, Mongolia. J. Arid Environ. 73, 949–954 (2009).

    ADS  Article  Google Scholar 

  • 16.

    Slimani, H., Aidoud, A. & Rozé, F. 30 Years of protection and monitoring of a steppic rangeland undergoing desertification. J. Arid Environ. 74, 685–691 (2010).

    ADS  Article  Google Scholar 

  • 17.

    Xu, B., Zhang, J., Huang, N., Gong, K. & Liu, Y. Characteristics of turbulent aeolian sand movement over straw checkerboard barriers and formation mechanisms of their internal erosion form. J. Geophys. Res. Atmos. 123(13), 6907–6919 (2018).

    ADS  Article  Google Scholar 

  • 18.

    Chou, C. W., Seagren, E. A., Aydilek, A. H. & Lai, M. Biocalcification of sand through ureolysis. J. Geotech. Geoenviron. Eng. 137(12), 1179–1189 (2011).

    CAS  Article  Google Scholar 

  • 19.

    Dejong, J. T., Mortensen, B. M., Martinez, B. C. & Nelson, D. C. Bio-mediated soil improvement. Ecol. Eng. 36(2), 197–210 (2010).

    Article  Google Scholar 

  • 20.

    Muynck, W. D., Belie, N. D. & Verstraete, W. Microbial carbonate precipitation in construction materials: a review. Ecol. Eng. 36(2), 118–136 (2010).

    Article  Google Scholar 

  • 21.

    Cuthbert, M. O. et al. A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation. Environ. Sci. Technol. 47(23), 13637–13643 (2013).

    ADS  CAS  Article  Google Scholar 

  • 22.

    Montoya, B., DeJong, J. & Boulanger, R. Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation. Géotechnique 63(4), 302–312 (2013).

    Article  Google Scholar 

  • 23.

    Soon, N. W., Lee, L. M., Khun, T. C. & Ling, H. S. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. J. Geotech. Geoenviron. Eng. 140(5), 04014006 (2014).

    Article  Google Scholar 

  • 24.

    Sun, X., Miao, L., Tong, T. & Wang, C. Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotech. 14(3), 627–638 (2019).

    Article  Google Scholar 

  • 25.

    DeJong, J. T., Fritzges, M. B. & Nusslein, K. Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. 132(11), 1381–1392 (2006).

    CAS  Article  Google Scholar 

  • 26.

    Sun, X., Miao, L., Tong, T. & Wang, C. Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification. J. Mater. Civ. Eng. 30(11), 04018301 (2018).

    Article  Google Scholar 

  • 27.

    Soon, N. W., Lee, L. M., Khun, T. C. & Ling, H. S. Improvements in engineering properties of soils through microbial-induced calcite precipitation. KSCE J. Civ. Eng. 17(4), 718–728 (2013).

    Article  Google Scholar 

  • 28.

    Wijngaarden, W., Vermolen, F., Meurs, G. & Vuik, C. Modelling biogrout: a new ground improvement method based on microbial-induced carbonate precipitation. Transp. Porous Media 87(2), 397–420 (2011).

    Article  Google Scholar 

  • 29.

    Wu, Y. et al. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation. Geochem. Trans. 12(1), 7 (2011).

    CAS  Article  Google Scholar 

  • 30.

    Miao, L. C., Wu, L. Y., Sun, X. H., Li, X. & Zhang, J. Z. Method for solidifying desert sands with enzyme-catalysed mineralization. Land Degrad. Dev. https://doi.org/10.1002/ldr.3499 (2019).

    Article  Google Scholar 

  • 31.

    Neupane, D., Yasuhara, H., Kinoshita, N. & Unno, T. Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique. J. Geotech. Geoenviron. Eng. 139(12), 2201–2211 (2013).

    CAS  Article  Google Scholar 

  • 32.

    Neupane, D., Yasuhara, H., Kinoshita, N. & Unno, T. Distribution of mineralized carbonate and its quantification method in enzyme mediated calcite precipitation technique. Soils Found. 55(2), 447–457 (2015).

    Article  Google Scholar 

  • 33.

    Hamdan, N. K. & Kavazanjian, E. Jr. Enzyme-induced carbonate mineral precipitation for fugitive dust control. Géotechnique 66(7), 546–555 (2016).

    Article  Google Scholar 

  • 34.

    Dakhane, A. et al. Crack healing in cementitious mortars using enzyme-induced carbonate precipitation: quantification based on fracture response. J. Mater. Civ. Eng. 30(4), 04018035 (2018).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Observed changes in dry-season water availability attributed to human-induced climate change

    Experimental study on the movement of heavy metal Zn in paddy soil under different irrigation quota of reclaimed water