in

Modelling sexually deceptive orchid species distributions under future climates: the importance of plant–pollinator interactions

  • 1.

    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–225 (2015).

    ADS  Google Scholar 

  • 2.

    Foden, W. B. & Young, B. E. (eds) IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change (IUCN Species Survival Commission, Gland, 2016).

    Google Scholar 

  • 3.

    Conde, D. A. et al. Data gaps and opportunities for comparative and conservation biology. PNAS 116, 9658–9664 (2019).

    CAS  PubMed  Google Scholar 

  • 4.

    Pearson, R. G. Species’ distribution modeling for conservation educators and practitioners. Lessons Conserv. 3, 54–89 (2010).

    Google Scholar 

  • 5.

    Tsiftsis, S., Djordjević, V. & Tsiripidis, I. Neottia cordata (Orchidaceae) at its southernmost distribution border in Europe: Threat status and effectiveness of Natura 2000 Network for its conservation. J. Nat. Conserv. 48, 27–35 (2019).

    Google Scholar 

  • 6.

    Margules, C. R. & Sarkar, S. Systematic Conservation Planning (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  • 7.

    Elith, J. & Leathwick, J. The contribution of species distribution modelling to conservation prioritization. In Spatial Conservation Prioritization. Quantitative Methods and Computational Tools (eds Moilanen, A. et al.) 70–93 (Oxford University Press Inc., Oxford, 2009).

    Google Scholar 

  • 8.

    Thompson, R. N. & Brooks-Pollock, E. Detection, forecasting and control of infectious disease epidemics: Modelling outbreaks in humans, animals and plants. Philos. Trans. R. Soc. Lond. B Biol. Sci. B374, 20190038 (2019).

    Google Scholar 

  • 9.

    Bertolino, S. et al. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 50, 187–199 (2020).

    Google Scholar 

  • 10.

    Suggitt, A. J. et al. Conducting robust ecological analyses with climate data. Oikos 126, 1533–1541 (2017).

    Google Scholar 

  • 11.

    Rojas-Sandoval, J. & Meléndez-Ackerman, E. J. Spatial patterns of distribution and abundance of Harrisia portoricensis, an endangered Caribbean cactus. J. Plant Ecol. 6, 489–498 (2013).

    Google Scholar 

  • 12.

    Smeraldo, S. et al. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 29, 1959–1976 (2020).

    Google Scholar 

  • 13.

    Jensen, A. M., O’Neil, N. P., Iwaniuk, A. N. & Burg, T. M. Landscape effects on the contemporary genetic structure of ruffed grouse (Bonasa umbellus) populations. Ecol. Evol. 9(10), 5572–5592 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 14.

    Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).

    Google Scholar 

  • 15.

    van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2025–2034 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Duffy, K. J. & Johnson, S. D. Specialized mutualisms may constrain the geographical distribution of flowering plants. Proc. R. Soc. B. 284, 20171841 (2017).

    PubMed  Google Scholar 

  • 17.

    Engelhardt, E. K., Neuschulz, E. L. & Hof, C. Ignoring biotic interactions overestimates climate change effects: The potential response of the spotted nutcracker to changes in climate and resource plants. J. Biogeogr. 47, 143–154 (2020).

    Google Scholar 

  • 18.

    Chase, M. W. et al. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 177, 151–174 (2015).

    Google Scholar 

  • 19.

    Govaerts, R. World Checklist of Orchidaceae. Facilitated by the Royal Botanic Gardens, Kew. (2019) https://wcsp.science.kew.org/. Accessed 14 Dec 2019.

  • 20.

    Waterman, R. J. & Bidartondo, M. I. Deception above, deception below: Linking pollination and mycorrhizal biology of orchids. J. Exp. Bot. 59, 1085–1096 (2008).

    CAS  PubMed  Google Scholar 

  • 21.

    Claessens, J. & Kleynen, J. The Flower of the European Orchid. Form and Function. (Jean Claessens and Jacques Kleynen, 2011).

  • 22.

    McCormick, M. K. & Jacquemyn, H. What constrains the distribution of orchid populations?. New Phytol. 202, 392–400 (2014).

    Google Scholar 

  • 23.

    Kull, T. & Hutchings, M. J. A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol. Conserv. 129, 31–39 (2006).

    Google Scholar 

  • 24.

    Wotavová, K., Balounová, Z. & Kindlmann, P. Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol. Conserv. 118, 271–279 (2004).

    Google Scholar 

  • 25.

    Pfeifer, M., Wiegand, K., Heinrich, W. & Jetschke, G. Long-term demographic fluctuations in an orchid species driven by weather: Implications for conservation planning. J. Appl. Ecol. 43, 313–324 (2006).

    Google Scholar 

  • 26.

    Tremblay, R. L. Trends in the pollination ecology of the Orchidaceae: Evolution and systematics. Can. J. Bot. 70, 642–650 (1992).

    Google Scholar 

  • 27.

    Cozzolino, S. & Scopece, G. Specificity in pollination and consequences for postmating reproductive isolation in deceptive Mediterranean orchids. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3037–3046 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Peakall, R. et al. Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: Implications for pollinator-driven speciation. New Phytol. 188, 437–450 (2010).

    CAS  PubMed  Google Scholar 

  • 29.

    Jersáková, J., Johnson, S. D. & Kindlmann, P. Mechanisms and evolution of deceptive pollination in orchids. Biol. Rev. 81, 219–235 (2006).

    PubMed  Google Scholar 

  • 30.

    Gaskett, A. C. Orchid pollination by sexual perspectives. Biol. Rev. 86, 33–75 (2011).

    CAS  PubMed  Google Scholar 

  • 31.

    Vereecken, N. J., Dafni, A. & Cozzolino, S. Pollination syndromes in mediterranean orchids—Implications for speciation, taxonomy and conservation. Bot. Rev. 76, 220–240 (2010).

    Google Scholar 

  • 32.

    Swarts, N. D. & Dixon, K. W. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 104, 543–556 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 33.

    Rasmussen, N. H. Terrestrial Orchids. From Seed to Mycotrophic Plant (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  • 34.

    Tsiftsis, S., Tsiripidis, I. & Trigas, P. Identifying important areas for orchid conservation in Crete. Eur. J. Environ. Sci. 1, 28–37 (2011).

    Google Scholar 

  • 35.

    Tsiftsis, S., Tsiripidis, I., Trigas, P. & Karagiannakidou, V. The effects of presence/absence vs. continuous suitability data on reserve selection. Eur. J. Environ. Sci. 2, 125–137 (2012).

    Google Scholar 

  • 36.

    Kolanowska, M. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae). PLoS ONE 8(10), e77352 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Kolanowska, M. & Rykaczewski, M. From the past to the future glacial refugia, current distribution patterns and future potential range changes of Diodonopsis (Orchidaceae) representatives. Lankesteriana 17, 315–327 (2017).

    Google Scholar 

  • 38.

    Kolanowska, M. et al. Global warming not so harmful for all plants—response of holomycotrophic orchid species for the future climate change. Sci. Rep. 7, 12704 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 39.

    Štípková, Z., Romportl, D., Černocká, V. & Kindlmann, P. Factors associated with the distributions of orchids in the Zeleníky mountains, Czech Republic. Eur. J. Environ. Sci. 7, 135–145 (2017).

    Google Scholar 

  • 40.

    Martinis, A., Chaideftou, E., Minotou, C. & Poirazidis, K. Spatial analysis of orchids diversity unveils hot-spots: The case of Zante Island, Greece. J. Agric. Inform. 9, 26–40 (2018).

    Google Scholar 

  • 41.

    Paulus, H. F. & Gack, C. Pollination of Ophrys (Orchidaceae) in Cyprus. Plant Syst. Evol. 169, 177–207 (1990).

    Google Scholar 

  • 42.

    Holt, R. D. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. PNAS 106, 19659–19665 (2009).

    ADS  CAS  PubMed  Google Scholar 

  • 43.

    Antonopoulos, Z. & Tsiftsis, S. Atlas of the Greek Orchids Vol. II (Mediterraneo Editions, Rethymno, 2017).

    Google Scholar 

  • 44.

    Waud, M., Brys, R., Van Landuyt, W., Lievens, B. & Jacquemyn, H. Mycorrhizal specificity does not limit the distribution of an endangered orchid species. Mol. Ecol. 26, 1687–1701 (2017).

    CAS  PubMed  Google Scholar 

  • 45.

    Giannini, T. C. et al. Climate change in the Eastern Amazon: Crop-pollinator and occurrence-restricted bees are potentially more affected. Reg. Environ. Change 20, 9 (2020).

    Google Scholar 

  • 46.

    Elias, M. A. S., Borges, F. J. A., Bergamini, L. L., Franceschinelli, E. V. & Sujii, E. R. Climate change threatens pollination services in tomato crops in Brazil. Agric. Ecosyst. Environ. 239, 257–264 (2017).

    Google Scholar 

  • 47.

    Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant–pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 48.

    Robbirt, K. M., Roberts, D. L., Hutchings, M. J. & Davy, A. J. Potential disruption of pollination in a sexually deceptive orchid by climate change. Curr. Biol. 24, 2845–2849 (2014).

    CAS  PubMed  Google Scholar 

  • 49.

    Schweiger, O. et al. Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob. Ecol. Biogeogr. 21, 88–99 (2012).

    Google Scholar 

  • 50.

    Holt, R. D. The microevolutionary consequences of climate change. Trends Ecol. Evol. 5, 311–315 (1990).

    CAS  PubMed  Google Scholar 

  • 51.

    Saupe, E. E. et al. Variation in niche and distribution model performance: The need for a priori assessment of key causal factors. Ecol. Model. 237–238, 11–22 (2012).

    Google Scholar 

  • 52.

    Early, R. & Sax, D. F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 23, 1356–1365 (2014).

    Google Scholar 

  • 53.

    Breitkopf, H., Onstein, R. E., Cafasso, D., Schlüter, P. M. & Cozzolino, S. Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive Ophrys orchids. New Phytol. 207, 377–389 (2015).

    PubMed  Google Scholar 

  • 54.

    Schlüter, P. M. et al. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids. PNAS 108, 5696–5791 (2011).

    ADS  PubMed  Google Scholar 

  • 55.

    Bilz, M., Kell, S. P., Maxted, N. & Lansdown, R. V. European Red List of Vascular Plants (Publications Office of the European Union, Brussels, 2011).

    Google Scholar 

  • 56.

    Tsiftsis, S. & Tsiripidis, I. Threat categories of the Greek orchids. Bot. Chron. 21, 43–74 (2016).

    Google Scholar 

  • 57.

    Paulus, H. F. Zur Bestäubungsbiologie einiger Ophrys-Arten in Nordthessalien mit Beschreibung von Ophrys olympiotissa aus der Ophrys argolicaferrum-equinum-Gruppe (Orchidaceae und Insecta, Apoidea). J. Eur. Orch. 43, 498–526 (2011).

    Google Scholar 

  • 58.

    Hennecke, M. & Munzinger, S. Ophrys subgen. Fuciflorae sect. Araniferae subsect. Argolicae. Ber. Arbeitskr. Heim. Orch. 31, 232–238 (2014).

    Google Scholar 

  • 59.

    Paulus, H. F. Deceived males—Pollination biology of the Mediterranean orchid genus Ophrys (Orchidaceae). J. Eur. Orch. 38, 303–353 (2006).

    ADS  Google Scholar 

  • 60.

    Rasmont, P. & Dehon, M. Anthophora plagiata. The IUCN Red List of Threatened Species 2015: e.T19199906A21776289. (2015). Downloaded on 06 December 2019.

  • 61.

    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Google Scholar 

  • 62.

    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40, 887–893 (2017).

    Google Scholar 

  • 63.

    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Google Scholar 

  • 64.

    Tsiftsis, S. & Antonopoulos, Z. Atlas of the Greek Orchids Vol. I (Mediterraneo Editions, Rethymno, 2017).

    Google Scholar 

  • 65.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Google Scholar 

  • 66.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

  • 67.

    IGME. Geological Map of Greece, 1:500,000 (IGME, Cantabria, 1983).

    Google Scholar 

  • 68.

    Habel, J. C., Teucher, M. & Rödder, D. Mark-release-recapture meets Species Distribution Models: Identifying micro-habitats of grassland butterflies in agricultural landscapes. PLoS ONE 13(11), e0207052 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 69.

    Kärcher, O., Frank, K., Walz, A. & Markovic, D. Scale effects on the performance of niche-based models of freshwater fish distributions. Ecol. Model. 405, 33–42 (2019).

    Google Scholar 

  • 70.

    Phillips, S. J. Transferability, sample selection bias and background data in presence-only modeling: A response to Peterson et al. (2007). Ecography 31, 272–278 (2008).

    Google Scholar 

  • 71.

    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).

    PubMed  Google Scholar 

  • 72.

    Duffy, K. J. & Jacquemyn, H. Climate change increases ecogeographical isolation between closely related plants. J. Ecol. 107, 167–177 (2019).

    Google Scholar 

  • 73.

    Wróblewska, A. & Mirski, P. From past to future: Impact of climate change on range shifts and genetic diversity patterns of circumboreal plants. Reg. Environ. Change 18, 409–424 (2018).

    Google Scholar 

  • 74.

    Zurell, D., Pollock, L. J. & Thuiller, W. Do joint species distribution models reliably detect interspecific interactions from co-occurrence data in homogenous environments?. Ecography 41, 1812–1819 (2018).

    Google Scholar 

  • 75.

    Jeschke, J. M. & Strayer, D. L. Usefulness of bioclimatic models for studying climate change and invasive species. Ann. N. Y. Acad. Sci. 1134, 1–24 (2008).

    ADS  PubMed  Google Scholar 

  • 76.

    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).

    PubMed  Google Scholar 

  • 77.

    Nunes, L. A. & Pearson, R. G. A null biogeographical test for assessing ecological niche evolution. J. Biogeogr. 44, 1331–1343 (2017).

    Google Scholar 

  • 78.

    Martínez-Méndez, N., Mejía, O., Ortega, J. & Méndez-de la Cruz, F. Climatic niche evolution in the viviparous Sceloporus torquatus group (Squamata: Phrynosomatidae). PeerJ 6, e6192 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 79.

    ESRI. ArcGIS Desktop: Release 10 (Environmental Systems Research Institute, Redlands, 2012).

    Google Scholar 


  • Source: Ecology - nature.com

    Observed changes in dry-season water availability attributed to human-induced climate change

    Experimental study on the movement of heavy metal Zn in paddy soil under different irrigation quota of reclaimed water