in

Genetic diversity and population structure of the rockpool shrimp Palaemon elegans based on microsatellites: evidence for a cryptic species and differentiation across the Atlantic–Mediterranean transition

  • 1.

    González-Ortegón, E. & Cuesta, J. A. An illustrated key to species of Palaemon and Palaemonetes (Crustacea: Decapoda: Caridea) from European waters, including the alien species Palaemon macrodactylus. J. Mar. Biol. Assoc. UK 86, 93–102. https://doi.org/10.1017/S0025315406012896 (2006).

    Article  Google Scholar 

  • 2.

    Taylor, A. C. & Spicer, J. I. Metabolic responses of the prawns Palaemon elegans and P. serratus (Crustacea: Decapoda) to acute hypoxia and anoxia. Mar. Biol. 95, 521–530. https://doi.org/10.1007/BF00393095 (1987).

    CAS  Article  Google Scholar 

  • 3.

    Janas, U., Pilka, M. & Lipinska, D. Temperature and salinity requirements of Palaemon adspersus Rathke 1837 and Palaemon elegans Rathke, 1837. Do they explain the occurrence and expansion of prawns in the Baltic Sea?. Mar. Biol. Res. 9, 293–300. https://doi.org/10.1080/17451000.2012.739699 (2013).

    Article  Google Scholar 

  • 4.

    d’Acoz, U. Inventaire et distribution des crustacés décapodes de l’Atlantique nord-orienal, de la Méditerranée et des eaux continentals adjacentes au nord de 25°N. Collection Patrimoines Naturels (Muséum National d’Histoire Naturelle (S.P.N.)) https://doi.org/10.1016/s0990-7440(02)01163-4 (1999).

    Article  Google Scholar 

  • 5.

    Grabowski, M. Rapid colonization of the Polish Baltic coast by an Atlantic palaemonid shrimp Palaemon elegans Rathke, 1837. Aquat. Invasions 1, 116–123. https://doi.org/10.3391/ai.2006.1.3.3 (2006).

    Article  Google Scholar 

  • 6.

    Katajisto, T., Kotta, J., Lehtiniemi, M., Malavin, S. A. & Panov, V. E. Palaemon elegans Rathke, 1837 (Caridea: Palaemonoidea: Palaemonidae) established in the Gulf of Finland. Bioinvasions Rec. 2, 125–132. https://doi.org/10.3391/bir.2013.2.2.05 (2013).

    Article  Google Scholar 

  • 7.

    González-Ortegón, E., Sargent, P., Pohle, G. & Martínez-Lage, A. The Baltic prawn Palaemon adspersus Rathke, 1837 (Decapoda, Caridea, Palaemonidae): First record, possible establishment, and illustrated key of the subfamily Palaemoninae in northwest Atlantic waters. Aquat. Invasions 10, 299–312. https://doi.org/10.3391/ai.2015.10.3.05 (2015).

    Article  Google Scholar 

  • 8.

    Reuschel, S., Cuesta, J. A. & Schubart, C. D. Marine biogeographic boundaries and human introduction along the European coast revealed by phylogeography of the prawn Palaemon elegans. Mol. Phylogenet. Evol. 55, 765–775. https://doi.org/10.1016/j.ympev.2010.03.021 (2010).

    Article  PubMed  Google Scholar 

  • 9.

    Ward, R. D. The importance of identifying spatial population structure in restocking and stock enhancement programmes. Fish. Res. 80, 9–18. https://doi.org/10.1016/j.fishres.2006.03.009 (2006).

    Article  Google Scholar 

  • 10.

    Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: a multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12, e0176419. https://doi.org/10.1371/journal.pone.0176419 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Patarnello, T., Volckaert, F. A. M. J. & Castilho, R. Pillars of Hercules: is the Atlantic–Mediterranean transition a phylogeographical break?. Mol. Ecol. 16, 4426–4444. https://doi.org/10.1111/j.1365-294X.2007.03477.x (2007).

    Article  PubMed  Google Scholar 

  • 12.

    Bilgin, R., Utkan, M. A., Kalkan, E., Karhan, S. & Bekbolet, M. DNA barcoding of twelve shrimp species (Crustacea: Decapoda) from Turkish seas reveals cryptic diversity. Mediterr. Mar. Sci. 16, 36–45. https://doi.org/10.12681/mms.548 (2014).

    Article  Google Scholar 

  • 13.

    Deli, T., Pfaller, M. & Schubart, C. D. Phylogeography of the littoral prawn species Palaemon elegans (Crustacea: Caridea: Palaemonidae) across the Mediterranean Sea unveils disparate patterns of population genetic structure and demographic history in the two sympatric genetic types II and III. Mar. Biodiv. https://doi.org/10.1007/s12526-017-0711-6 (2018).

    Article  Google Scholar 

  • 14.

    Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155. https://doi.org/10.1016/j.tree.2006.11.004 (2007).

    Article  PubMed  Google Scholar 

  • 15.

    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260. https://doi.org/10.1016/j.tree.2009.10.009 (2010).

    Article  PubMed  Google Scholar 

  • 16.

    Fernández, M. V., Heras, S., Maltagliati, F. & Roldán, M. I. Deep genetic divergence in giant red shrimp Aristaeomorpha foliacea (Risso, 1827) across a wide distributional range. J. Sea Res. 76, 146–153. https://doi.org/10.1016/j.seares.2012.08.004 (2013).

    ADS  Article  Google Scholar 

  • 17.

    Fernández, M. V., Heras, S., Vinas, J., Maltagliati, F. & Roldán, M. I. Multilocus comparative phylogeography of two Aristeid shrimps of high commercial interest (Aristeus antennatus and Aristaeomorpha foliacea) reveals different responses to past environmental changes. PLoS ONE 8, e59033. https://doi.org/10.1371/journal.pone.0059033 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Barba, De. et al. High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA. Mol. Ecol. Resour. 17, 492–507. https://doi.org/10.1111/1755-0998.12594 (2017).

    CAS  Article  PubMed  Google Scholar 

  • 19.

    Goldstein, D. B. & Schlotterer, C. Microsatellites—Evolution and Applications. Oxford University Press, Oxford. https://doi.org/10.1017/S0016672300239141 (1999).

    Article  Google Scholar 

  • 20.

    Wright, J. M. & Bentzen, P. Microsatellites: genetic markers for the future. Mol. Genet. Fish. 1, 117–121. https://doi.org/10.1007/978-94-011-1218-5_7 (1995).

    Article  Google Scholar 

  • 21.

    Valles-Jiménez, R., Cruz, P. & Pérez-Enríquez, R. Population genetic structure of pacific white shrimp (Litopenaus vannamei) from Mexico to Panama: microsatellite DNA variation. Mar. Biotechnol. 6, 475–484. https://doi.org/10.1007/s10126-004-3138-6 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 22.

    Waqairatu, S. S. et al. Genetic analysis of black tiger shrimp (Penaeus monodon) across its natural distribution range reveals more recent colonization of Fiji and other South Pacific islands. Ecol. Evol. 2, 2057–2071. https://doi.org/10.1002/ece3.316 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Jorde, P. E. et al. Genetically distinct populations of northern shrimp, Pandalus borealis, in the North Atlantic: adaptation to different temperatures as an isolation factor. Mol. Ecol. 24, 1742–1757. https://doi.org/10.1111/mec.13158 (2015).

    Article  PubMed  Google Scholar 

  • 24.

    Heras, S., Planella, L., García-Marín, J. L., Vera, M. & Roldán, M. I. Genetic structure and population connectivity of the blue and red shrimp Aristeus antennatus. Sci. Rep. 9, 1–11. https://doi.org/10.1038/s41598-019-49958-5 (2019).

    CAS  Article  Google Scholar 

  • 25.

    Perina, A. et al. Assessment of genetic diversity and population structure of the common littoral shrimp Palaemon serratus (Pennant, 1777) by microsatellites: towards a sustainable management. Aquatic Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3011 (2019).

    Article  Google Scholar 

  • 26.

    Davey, J. W. et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12, 499–510. https://doi.org/10.1038/nrg3012 (2011).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 27.

    González-Castellano, I., Perina, A., González-Tizón, A. M., Torrecilla, Z. & Martínez-Lage, A. Isolation and characterization of 21 polymorphic microsatellite loci for the rockpool shrimp Palaemon elegans using Illumina MiSeq sequencing. Sci. Rep. 8, 17197. https://doi.org/10.1038/s41598-018-35408-1 (2018).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631. https://doi.org/10.1093/molbev/msl191 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Perina, A., González-Tizón, A. M., Vizcaíno, A., González-Ortegón, E. & Martínez-Lage, A. Isolation and characterization of 20 polymorphic microsatellite loci in Palaemon serratus and cross-amplification in Palaemon species by 454 pyrosequencing. Conserv. Genet. Resour. 8, 169–196. https://doi.org/10.1007/s12686-016-0549-4 (2016).

    Article  Google Scholar 

  • 30.

    Dailianis, T., Tsigenopoulos, C. S., Dounas, C. & Voultsiadou, E. Genetic diversity of the imperilled bath sponge Spongia officinalis Linnaeus, 1759 across the Mediterranean Sea: patterns of population differentiation and implications for taxonomy and conservation. Mol. Ecol. 20, 3757–3772. https://doi.org/10.1111/j.1365-294X.2011.05222.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Plough, L. V. & Marko, P. B. Characterization of microsatellite loci and repeat density in the gooseneck barnacle, Pollicipes elegans, using next generation sequencing. J. Hered. 105, 136–142. https://doi.org/10.1093/jhered/est064 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Boissin, E., Féral, J. P. & Chenuil, A. Defining reproductively isolated units in a cryptic and syntopic species complex using mitochondrial and nuclear markers: the brooding brittle star, Amphipholis squamata (Ophiuroidea). Mol. Ecol. 17, 1732–1744. https://doi.org/10.1111/j.1365-294X.2007.03652.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Griffiths, A. M. et al. Molecular markers reveal spatially segregated cryptic species in a critically endangered fish, the common skate (Dipturus batis). Proc. R. Soc. B. Biol. Sci. 277, 1497–1503. https://doi.org/10.1098/rspb.2009.2111 (2010).

    Article  Google Scholar 

  • 34.

    Andrews, K. R., Norton, E. L., Fernandez-Silva, I., Portner, E. & Goetze, E. Multilocus evidence for globally distributed cryptic species and distinct populations across ocean gyres in a mesopelagic copepod. Mol. Ecol. 23, 5462–5479. https://doi.org/10.1111/mec.12950 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 35.

    Naughton, K. M., O’Hara, T. D., Appleton, B. & Gardner, M. G. Sympatric cryptic species in the crinoid genus Cenolia (Echinodermata: Crinoidea: Comasteridae) delineated by sequence and microsatellite markers. Mol. Phylogenet. Evol. 78, 160–171. https://doi.org/10.1016/j.ympev.2014.05.006 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 36.

    García-Castellanos, D. et al. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462, 778. https://doi.org/10.1038/nature08555 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 37.

    Marino, I. A., Pujolar, J. M. & Zane, L. Reconciling deep calibration and demographic history: Bayesian inference of post glacial colonization patterns in Carcinus aestuarii (Nardo, 1847) and C. maenas (Linnaeus, 1758). PLOS ONE 6, e28567. https://doi.org/10.1371/journal.pone.0028567 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 38.

    Pérez-Portela, R., Almada, V. & Turon, X. Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe. Zool. Scr. 42, 151–169. https://doi.org/10.1111/j.1463-6409.2012.00573.x (2013).

    Article  Google Scholar 

  • 39.

    Tintoré, J., La Violette, P. E., Blade, I. & Cruzado, A. A study of an intense density front in the eastern Alboran Sea: the Almeria-Oran front. J. Phys. Oceanogr. 18, 1384–1397. https://doi.org/10.1175/1520-0485(1988)018<1384:ASOAID>2.0.CO;2 (1988).

    ADS  Article  Google Scholar 

  • 40.

    Pérez-Losada, M., Guerra, A., Carvalho, G. R., Sanjuan, A. & Shaw, P. W. Extensive population subdivision of the cuttlefish Sepia officinalis (Mollusca: Cephalopoda) around the Iberian Peninsula indicated by microsatellite DNA variation. Heredity 89, 417–424. https://doi.org/10.1038/sj.hdy.6800160 (2002).

    CAS  Article  PubMed  Google Scholar 

  • 41.

    Galarza, J. A. et al. The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc. Natl. Acad. Sci. USA 106, 1473–1478. https://doi.org/10.1073/pnas.0806804106 (2009).

    ADS  Article  PubMed  Google Scholar 

  • 42.

    Pannacciulli, F. G., Maltagliati, F., De Guttry, C. & Achituv, Y. Phylogeography on the rocks: the contribution of current and historical factors in shaping the genetic structure of Chthamalus montagui (Crustacea, Cirripedia). PLoS ONE 12, e0178287. https://doi.org/10.1371/journal.pone.0178287 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Nantón, A. et al. Microsatellite variation in Donax trunculus from the Iberian Peninsula, with particular attention to Galician estuaries (NW Spain). Estuar. Coast. Shelf Sci. 197, 27–34. https://doi.org/10.1016/j.ecss.2017.08.011 (2017).

    ADS  Article  Google Scholar 

  • 44.

    Fratini, S. et al. Unravelling population genetic structure with mitochondrial DNA in a notional panmictic coastal crab species: sample size makes the difference. BMC Evol. Biol. 16, 150. https://doi.org/10.1186/s12862-016-0720-2 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 45.

    Schunter, C. et al. Matching genetics with oceanography: directional gene flow in a Mediterranean fish species. Mol. Ecol. 20, 5167–5181. https://doi.org/10.1111/j.1365-294X.2011.05355.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 46.

    García-Merchán, V. H. et al. Phylogeographic patterns of decapod crustaceans at the Atlantic–Mediterranean transition. Mol. Phylogenet. Evol. 62, 664–672. https://doi.org/10.1016/j.ympev.2011.11.009 (2012).

    Article  PubMed  Google Scholar 

  • 47.

    Weiss, R. et al. Genetic differentiation between Mediterranean and Atlantic populations of the common prawn Palaemon serratus (Crustacea: Palaemonidae) reveals uncommon phylogeographic break. J. Mar. Biol. Assoc. UK 98, 1425–1434. https://doi.org/10.1017/S0025315417000492 (2018).

    Article  Google Scholar 

  • 48.

    Sá-Pinto, A., Branco, M., Sayanda, D. & Alexandrino, P. Patterns of colonization, evolution and gene flow in species of the genus Patella in the Macaronesian Islands. Mol. Ecol. 17, 519–532. https://doi.org/10.1111/j.1365-294X.2007.03563.x (2008).

    CAS  Article  PubMed  Google Scholar 

  • 49.

    Pérez-Portela, R., Villamor, A. & Almada, V. Phylogeography of the sea star Marthasterias glacialis (Asteroidea, Echinodermata): deep genetic divergence between mitochondrial lineages in the north-western mediterranean. Mar. Biol. 157, 2015–2028. https://doi.org/10.1007/s00227-010-1470-0 (2010).

    Article  Google Scholar 

  • 50.

    Pérez-Portela, R., Rius, M. & Villamor, A. Lineage splitting, secondary contacts and genetic admixture of a widely distributed marine invertebrate. J. Biogeogr. 44, 446–460. https://doi.org/10.1111/jbi.12917 (2017).

    Article  Google Scholar 

  • 51.

    Borrero-Pérez, G. H., González-Wangüemert, M., Marcos, C. & Pérez-Ruzafa, A. Phylogeography of the Atlanto-Mediterranean Sea cucumber Holothuria (Holothuria) mammata: the combined effects of historical processes and current oceanographical pattern. Mol. Ecol. 20, 1964–1975. https://doi.org/10.1111/j.1365-294X.2011.05068.x (2011).

    Article  PubMed  Google Scholar 

  • 52.

    Domingues, V. S., Almada, V. C., Santos, R. S., Brito, A. & Bernardi, G. Phylogeography and evolution of the triplefin Tripterygion delaisi (Pisces, Blennioidei). Mar. Biol. 150, 509–519. https://doi.org/10.1007/s00227-006-0367-4 (2007).

    Article  Google Scholar 

  • 53.

    González-Wangüemert, M., Froufe, E., Pérez-Ruzafa, A. & Alexandrino, P. Phylogeographical history of the white seabream Diplodus sargus (Sparidae): implications for insularity. Mar. Biol. Res. 7, 250–260. https://doi.org/10.1080/17451000.2010.499438 (2011).

    Article  Google Scholar 

  • 54.

    Mason, E., Coombs, S. & Oliveira, P.B. An overview of the literature concerning the oceanography of the eastern North Atlantic region. Relatórios Científicos e Técnicos IPIMAR Série digital no. 33.

  • 55.

    Primmer, R. C., Painter, N. J., Koskinen, T. M., Palo, U. J. & Merilä, J. Factors affecting avian cross-species microsatellite amplification. J. Avian Biol. 36, 348–360. https://doi.org/10.1111/j.0908-8857.2005.03465.x (2005).

    Article  Google Scholar 

  • 56.

    Barbará, T. et al. Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol. Ecol. 16, 3759–3767. https://doi.org/10.1111/j.1365-294X.2007.03439.x (2007).

    Article  PubMed  Google Scholar 

  • 57.

    Rutkowski, R., Sielezniew, M. & Szostak, A. Contrasting levels of polymorphism in cross-amplified microsatellites in two endangered xerothermophilous, obligatorily myrmecophilous, butterflies of the genus Phengaris (Maculinea) (Lepidoptera: Lycaenidae). Eur. J. Entomol. 106, 457–469. https://doi.org/10.14411/eje.2009.058 (2009).

    CAS  Article  Google Scholar 

  • 58.

    Yue, G. H., Balazs, K. & Laszlo, O. A new problem with cross-species amplification of microsatellites: generation of non-homologous products. Zool. Res. 31, 131–140. https://doi.org/10.3724/SP.J.1141.2010.02131 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Peakall, R. & Smouse, P. E. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Resour. 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).

    Article  Google Scholar 

  • 61.

    Goudet, J. FSTAT version 2. 9. 4: a program to estimate and test population genetics parameters. Updated from Goudet [1995]. Available from https://www.unil.ch/izea/softwares/fstat.html (2003).

  • 62.

    Rousset, F. Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).

    Article  PubMed  Google Scholar 

  • 63.

    Manly, B. F. J. The statistics of natural selection (Chapman and Hall, London, 1985).

    Google Scholar 

  • 64.

    Yeh, F. C. et al. Popgene, the User Friendly Shareware for Population Genetic Analysis (Molecular Biology and Biotechnology Centre, University of Alberta, Alberta, Canada, 1997).

    Google Scholar 

  • 65.

    Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (methodological) https://doi.org/10.1111/j.2517-6161.1977.tb01600.x (1977).

    Article  MATH  Google Scholar 

  • 66.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Hubisz, M. J., Falush, D., Stephens, M. & Pritchard, J. K. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • 68.

    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).

    Article  Google Scholar 

  • 69.

    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 70.

    Jakobsson, M. & Rosenberg, N. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806. https://doi.org/10.1093/bioinformatics/btm233 (2007).

    CAS  Article  PubMed  Google Scholar 

  • 71.

    Ramasamy, R. K., Ramasamy, S., Bindroo, B. B. & Naik, V. G. STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus 3, 431. https://doi.org/10.1186/2193-1801-3-431 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 72.

    Belkhir, K., Borsa, P., Chikhi, L., Raufaste N. & Bonhomme F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France). (1996–2004).

  • 73.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 546–67. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article  Google Scholar 

  • 74.

    Narum, S. R. Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv. Genet. 7, 783–787. https://doi.org/10.1007/s10592-005-9056-y (2006).

    CAS  Article  Google Scholar 

  • 75.

    Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    90s slow-down

    D-Lab moves online, without compromising on impact