in

A new inclusive MLVA assay to investigate genetic variability of Xylella fastidiosa with a specific focus on the Apulian outbreak in Italy

  • 1.

    EFSA. Update of the Xylella spp. host plant database. EFSA J. 16, 5408. https://doi.org/10.2903/j.efsa.2018.5408 (2018).

    Article  Google Scholar 

  • 2.

    Almeida, R. P. P. & Nunney, L. How do plant diseases caused by Xylella fastidiosaXylella fastidiosa emerge?. Plant Dis. https://doi.org/10.1094/PDIS-02-15-0159-FE (2015).

    Article  PubMed  Google Scholar 

  • 3.

    Hopkins, D. L. Xylella fastidiosa: Xylem-limited bacterial pathogen of plants. Plant Dis. https://doi.org/10.1094/PDIS-02-15-0159-FE (1989).

    Article  Google Scholar 

  • 4.

    Baldi, P. & La Porta, N. Xylella fastidiosa: Host range and advance in molecular identification techniques. Front. Plant Sci. 8, 944. https://doi.org/10.3389/fpls.2017.00944 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 5.

    Purcell, A. Paradigms: Examples from the bacterium Xylella fastidiosa. Annu. Rev. Phytopathol. 51, 339–356. https://doi.org/10.1146/annurev-phyto-082712-102325 (2013).

    CAS  Article  PubMed  Google Scholar 

  • 6.

    Almeida, R. P. P. et al. Genetic structure and biology of Xylella fastidiosa strains causing disease in citrus and coffee in Brazil. Appl. Environ. Microbiol. 74, 3690–3701. https://doi.org/10.1128/AEM.02388-07 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 7.

    Harris, J. L. & Balci, Y. Population structure of the bacterial pathogen Xylella fastidiosa among street trees in Washington DC. PLoS One 10, e0121297. https://doi.org/10.1371/journal.pone.0121297 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Nunney, L. et al. Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States. Appl. Environ. Microbiol. 79, 2189–2189. https://doi.org/10.1128/AEM.03208-12 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 9.

    Schaad, N. W., Postnikova, E., Lacy, G., Fatmi, M. & Chang, C. J. Xylella fastidiosa subspecies: X. fastidiosa subsp. fastidiosa subsp. nov., X. fastidiosa subsp. multiplex subsp. nov., and X. fastidiosa subsp. pauca subsp. nov. Syst Appl Microbiol 27, 290–300. https://doi.org/10.1078/0723-2020-00263 (2004).

    CAS  Article  PubMed  Google Scholar 

  • 10.

    Denancé, N. et al. Several subspecies and sequence types are associated with the emergence of Xylella fastidiosa in natural settings in France. Plant Pathol. 66, 1054–1064. https://doi.org/10.1111/ppa.12695 (2017).

    CAS  Article  Google Scholar 

  • 11.

    Nunney, L., Schuenzel, E., Scally, M., Bromley, R. & Stouthamer, R. Large-scale intersubspecific recombination in the plant-pathogenic bacterium Xylella fastidiosa is associated with the host shift to mulberry. Appl. Environ. Microbiol. 80, 3025–3033. https://doi.org/10.1128/AEM.04112-13 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 12.

    Randall, J. J. et al. Genetic analysis of a novel Xylella fastidiosa subspecies found in the southwestern United States. Appl. Environ. Microbiol. 75, 5631–5638. https://doi.org/10.1128/AEM.00609-09 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 13.

    Su, C. et al. 2013 Pierce’s disease of grapevines in Taiwan: Isolation, cultivation and pathogenicity of Xylella fastidiosa. J. Phytopathol. 161, 389–396. https://doi.org/10.1111/jph.12075

    CAS  Article  Google Scholar 

  • 14.

    Saponari, M., Boscia, D., Nigro, F. & Martelli, G. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J. Plant Pathol. 95, 668–668 (2013).

    Google Scholar 

  • 15.

    Amanifar, N., Taghavi, M., Izadpanah, K. & Babaei, G. Isolation and pathogenicity of Xylella fastidiosa from grapevine and almond in Iran. Phytopathol. Mediterr. https://doi.org/10.14601/Phytopathol_Mediterr-12647 (2014).

    Article  Google Scholar 

  • 16.

    Olmo, D. et al. First detection of Prunus avium infecting cherry (Prunus avium) and Polygala myrtifolia plants, in Mallorca Island, Spain. Plant Dis. 101, 1820–1820. https://doi.org/10.1094/PDI5-04-17-0590-PDN (2017).

    Article  Google Scholar 

  • 17.

    EPPO. First report of Xylella fastidiosa subsp. multiplex in Portugal. Report, European Plant Protection Organization (2019).

  • 18.

    EPPO. First report of Xylella fastidiosa in Israel. Report, European Plant Protection Organization (2019).

  • 19.

    Mehta, A., Pereira Leite, R. & Bomura Rosato, Y. Assessment of the genetic diversity of Xylella fastidiosa isolated from citrus in Brazil by PCR–RFLP of the 16s r DNA and 16 S-23 S intergenic spacer and rep-PCR fingerprinting. Antonie Van Leeuwenhoek 79, 53–59. https://doi.org/10.1023/A:1010219811555 (2001).

    Article  Google Scholar 

  • 20.

    Lacava, P., Araújo, W., Maccheroni, W. Jr. & Azevedo, J. RAPD profile and antibiotic susceptibility of Xylella fastidiosa, causal agent of citrus variegated chlorosis. Lett. Appl. Microbiol. 33, 302–306. https://doi.org/10.1046/j.1472-765X.2001.01000.x (2001).

    CAS  Article  PubMed  Google Scholar 

  • 21.

    Kishi, L., Wickert, E. & de Macedo Lemos, E. Evaluation of Xylella fastidiosa genetic diversity by fAFPL markers. Rev. Bras. Fruticult. 30, 202–208, https://doi.org/10.1590/S0100-29452008000100037 (2008).

    Article  Google Scholar 

  • 22.

    Nunney, L., Ortiz, B., Russell, S., Sanchez, R. & Stouthamer, R. The complex biogeography of the plant pathogen Xylella fastidiosa: Genetic evidence of introductions and subspecific introgression in Central America. Plos One. https://doi.org/10.1371/journal.pone.0112463 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 23.

    Yuan, X. et al. Multilocus sequence typing of Xylella fastidiosa causing Pierce’s Disease and oleander leaf scorch in the United States. Phytopathology https://doi.org/10.1094/PHYTO-100-6-0601 (2010).

    Article  PubMed  Google Scholar 

  • 24.

    Elbaino, T. et al. Multilocus sequence typing of Xylella fastidiosa, isolated from olive affected by ‘ Olive Quick Decline Syndrome’ in Italy. Phytopathol. Mediterr. 53, 533–542. https://doi.org/10.14601/Phytopathol_Mediterr-15000 (2014).

    Google Scholar 

  • 25.

    Loconsole, G. et al. Intercepted isolates of Xylella fastidiosa in Europe reveal novel genetic diversity. Eur. J. Plant Pathol. 146, 85–94. https://doi.org/10.1007/s10658-016-0894-x (2016).

    CAS  Article  Google Scholar 

  • 26.

    Coletta-Filho, H. D., Francisco, C. S., Lopes, J. R. S., Muller, C. & Almeida, R. P. P. Homologous recombination and Xylella fastidiosa host-pathogen associations in South America. Phytopathology 107, 305–312. https://doi.org/10.1094/PHYTO-09-16-0321-R (2017).

    Article  PubMed  Google Scholar 

  • 27.

    Marcelletti, S. & Scortichini, M. Genome-wide comparison and taxonomic relatedness of multiple Xylella fastidiosa strains reveal the occurrence of three subspecies and a new xylella species. Arch. Microbiol. 198, 803–812. https://doi.org/10.1007/s00203-016-1245-1 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 28.

    Li, W., Raoult, D. & Fournier, P. Bacterial strain typing in the genomic era. Fems Microbiol. Rev. 33, 892–916. https://doi.org/10.1111/j.1574-6976.2009.00182.x (2009).

    CAS  Article  PubMed  Google Scholar 

  • 29.

    Kremer, K. et al. Comparison of methods based on different molecular epidemiological markers for typing of mycobacterium tuberculosis complex strains: Interlaboratory study of discriminatory power and reproducibility. J. Clin. Microbiol.J. Clin. Microbiol.37, 2607–2618 (1999).

    CAS  Article  Google Scholar 

  • 30.

    van Belkum, A. Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (MLVA). Fems Immunol. Med. Microbiol. 49, 22–27. https://doi.org/10.1111/j.1574-695X.2006.00173.x (2007).

    CAS  Article  PubMed  Google Scholar 

  • 31.

    Lindstedt, B. Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26, 2567–2582. https://doi.org/10.1002/elps.200500096 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 32.

    Coletta-Filho, H. D. et al. Differentiation of strains of Xylella fastidiosa by a variable number of tandem repeat analysis. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.67.9.4091-4095.2001 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Lin, H. et al. Multilocus simple sequence repeat markers for differentiating strains and evaluating genetic diversity of Xylella fastidiosa. Appl. Environ. Microbiol. 71, 4888–4892. https://doi.org/10.1128/AEM.71.8.4888-4892.2005 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Montero-Astúa, M. et al. Isolation and molecular characterization of Xylella fastidiosa from coffee plants in Costa Rica. J. Microbiol. https://doi.org/10.1007/s12275-008-0072-8 (2008).

    Article  PubMed  Google Scholar 

  • 35.

    Coletta-Filho, H. D., Francisco, C. S. & Almeida, R. P. P. Temporal and spatial scaling of the genetic structure of a vector-borne plant pathogen. Phytopathology. https://doi.org/10.1094/PHYTO-06-13-0154-R (2014).

    Article  PubMed  Google Scholar 

  • 36.

    Lin, H., Islam, M., Cabrera-La Rosa, J., Civerolo, E. & Groves, R. Population structure of Xylella fastidiosa associated with almond leaf scorch disease in the San Joaquin Valley of California. Phytopathology 105, 825–832. https://doi.org/10.1094/PHYTO-09-14-0254-R (2015).

    Article  Google Scholar 

  • 37.

    Montes-Borrego, M., Lopes, J. R. S., Jiménez-Díaz, R. M. & Landa, B. B. Combined use of a new snp-based assay and multilocus SSR markers to assess genetic diversity of Xylella fastidiosa subsp. pauca infecting citrus and coffee plants. Int. Microbiol. https://doi.org/10.2436/20.1501.01.230 (2015).

    Article  PubMed  Google Scholar 

  • 38.

    Francisco, C. S., Ceresini, P. C., Almeida, R. P. P. & Coletta-Filho, H. D. Spatial genetic structure of coffee-associated Xylella fastidiosa populations indicates that cross infection does not occur with sympatric citrus orchards. Phytopathology 107, 395–402. https://doi.org/10.1094/PHYTO-08-16-0300-R (2017).

    CAS  Article  PubMed  Google Scholar 

  • 39.

    Cariddi, C. et al. Isolation of a Xylella fastidiosa strain infecting olive and oleander in Apulia Italy. J. Plant Pathol. https://doi.org/10.4454/JPP.V96I2.024 (2014).

    Article  Google Scholar 

  • 40.

    Saponari, M. et al. Isolation and pathogenicity of Xylella fastidiosa associated to the olive quick decline syndrome in southern Italy. Sci. Rep.Sci. Rep.. https://doi.org/10.1038/s41598-017-17957-z (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 41.

    Bergsma-Vlami, M. et al. Assessment of the genetic diversity of Xylella fastidiosa in imported ornamental coffea arabica plants. Plant Pathol. 66, 1065–1074. https://doi.org/10.1111/ppa.12696 (2017).

    CAS  Article  Google Scholar 

  • 42.

    Martelli, G., Boscia, D., Porcelli, F. & Saponari, M. The olive quick decline syndrome in south-east Italy: A threatening phytosanitary emergency. Eur. J. Plant Pathol.144, 235–243. https://doi.org/10.1007/s10658-015-0784-7 (2016).

    Article  Google Scholar 

  • 43.

    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580. https://doi.org/10.1093/nar/27.2.573 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 44.

    EPPO. Pm 7/24 (4) Pm 7/24 (4) Xylella fastidiosa. EPPO Bull.49, 175–227. https://doi.org/10.1111/epp.12575 (2019).

    Article  Google Scholar 

  • 45.

    Maiden, M. et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95, 3140–3145. https://doi.org/10.1073/pnas.95.6.3140 (1998).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 46.

    Safady, N., Lopes, J., Francisco, C. & Della Coletta, H. Distribution and genetic diversity of Xylella fastidiosa subsp. pauca associated with olive quick syndrome symptoms in southeastern Brazil. Phytopathology 109, 257–264. https://doi.org/10.1094/PHYTO-07-18-0273-FI (2019).

    Article  PubMed  Google Scholar 

  • 47.

    EFSA. Statement on diversity of Xylella fastidiosa subsp. pauca in Apulia. EFSA J. 14, 4542. https://doi.org/10.2903/j.efsa.2016.4542 (2016).

    Article  Google Scholar 

  • 48.

    Lin, H. et al. Genetic variation of Xylella fastidiosa associated with grapevines in two major viticultural regions in the united states: California and Texas. J. Plant Pathol.95, 329–337 (2013).

    Google Scholar 

  • 49.

    Bruvo, R., Michiels, N., D’Souza, T. & Schulenburg, H. A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol. Ecol. 13, 2101–2106. https://doi.org/10.1111/j.1365-294X.2004.02209.x (2004).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Clark, L. & Jasieniuk, M. POLYSAT: An R package for polyploid microsatellite analysis. Mol. Ecol. Resour. 11, 562–566. https://doi.org/10.1111/j.1755-0998.2011.02985.x (2011).

    Article  PubMed  Google Scholar 

  • 51.

    Kamvar, Z. N., Tabima, J. F. & Grunwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 1, 1–14. https://doi.org/10.7717/peerj.281 (2014).

    Article  Google Scholar 

  • 52.

    Meirmans, P. & Van Tienderen, P. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794. https://doi.org/10.1111/j.1471-8286.2004.00770.x (2004).

    Article  Google Scholar 

  • 53.

    Francisco, A., Bugalho, M., Ramirez, M. & Carrico, J. Global optimal e BURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinf. 10, https://doi.org/10.1186/1471-2105-10-152 (2009).

    Article  Google Scholar 

  • 54.

    Feil, E., Li, B., Aanensen, D., Hanage, W. & Spratt, B. e BURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J. Bacteriol. 186, 1518–1530. https://doi.org/10.1128/JB.186.5.1518-1530.2004 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 55.

    code by Richard A. Becker, O. S., version by Ray Brownrigg. Enhancements by Thomas P Minka, A. R. W. R. & Deckmyn., A. maps: Draw Geographical Maps (2018). R package version 3.3.0.

  • 56.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Spring, New York, 2016).

    Google Scholar 

  • 57.

    Harper, S., Ward, L. & Clover, G. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 100, 1282–1288. https://doi.org/10.1094/PHYTO-06-10-0168 (2010).

    CAS  Article  PubMed  Google Scholar 

  • 58.

    Kassambara, A. & Mundt, F. Factoextra: Extract and visualize the results of multivariate data analyses [R package Factoextra version 1.0.5] (2016).

  • 59.

    Nascimento, M. et al. Phyloviz 2.0: Providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 33, 128–129, https://doi.org/10.1093/bioinformatics/btw582 (2017).

    CAS  Article  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    D-Lab moves online, without compromising on impact

    Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle