in

Forest fragmentation modifies the composition of bumblebee communities and modulates their trophic and competitive interactions for pollination

  • 1.

    Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208. https://doi.org/10.1146/annurev.ento.53.103106.093454 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 2.

    Williams, P. H. & Osborne, J. L. Bumblebee vulnerability and conservation world-wide. Apidologie 40, 367–387. https://doi.org/10.1051/apido/2009025 (2009).

    Article  Google Scholar 

  • 3.

    Goulson, D., Hanley, M. E., Darvill, B., Ellis, J. & Knight, M. E. Causes of rarity in bumblebees. Biol. Cons. 122, 1–8 (2005).

    Article  Google Scholar 

  • 4.

    Potts, S. G., Vulliamy, B., Dafni, A., Ne’eman, G. & Willmer, P. Linking bees and flowers: How do floral communities structure pollinator communities?. Ecology 84, 2628–2642. https://doi.org/10.1890/02-0136 (2003).

    Article  Google Scholar 

  • 5.

    Lázaro, A., Fuster, F., Alomar, D. & Totland, Ø. Disentangling direct and indirect effects of habitat fragmentation on wild plants’ pollinator visits and seed production. Ecol. Appl. https://doi.org/10.1002/eap.2099 (2020).

    Article  PubMed  Google Scholar 

  • 6.

    Svensson, B., Lagerlof, J. & Svensson, B. G. Habitat preferences of nest-seeking bumble bees (Hymenoptera: Apidae) in an agricultural landscape. Agric. Ecosyst. Environ. 77, 247–255. https://doi.org/10.1016/s0167-8809(99)00106-1 (2000).

    Article  Google Scholar 

  • 7.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419 (2003).

    Article  Google Scholar 

  • 8.

    Tscharntke, T., Steffan-Dewenter, I., Kruess, A. & Thies, C. Characteristics of insect populations on habitat fragments: A mini review. Ecol. Res. 17, 229–239. https://doi.org/10.1046/j.1440-1703.2002.00482.x (2002).

    Article  Google Scholar 

  • 9.

    Dupont, Y. L., Damgaard, C. & Simonsen, V. Quantitative historical change in Bumblebee (Bombus spp.) assemblages of red clover fields. PLoS One 6, 7. https://doi.org/10.1371/journal.pone.0025172 (2011).

    CAS  Article  Google Scholar 

  • 10.

    Bommarco, R., Lundin, O., Smith, H. G. & Rundlof, M. Drastic historic shifts in bumble–bee community composition in Sweden. Proc. R. Soc. B Biol. Sci. 279, 309–315. https://doi.org/10.1098/rspb.2011.0647 (2012).

    Article  Google Scholar 

  • 11.

    Persson, A. S., Rundlof, M., Clough, Y. & Smith, H. G. Bumble bees show trait-dependent vulnerability to landscape simplification. Biodivers. Conserv. 24, 3469–3489. https://doi.org/10.1007/s10531-015-1008-3 (2015).

    Article  Google Scholar 

  • 12.

    Brosi, B. J., Daily, G. C., Shih, T. M., Oviedo, F. & Duran, G. The effects of forest fragmentation on bee communities in tropical countryside. J. Appl. Ecol. 45, 773–783. https://doi.org/10.1111/j.1365-2664.2007.01412.x (2008).

    Article  Google Scholar 

  • 13.

    Jauker, B., Krauss, J., Jauker, F. & Steffan-Dewenter, I. Linking life history traits to pollinator loss in fragmented calcareous grasslands. Landsc. Ecol. 28, 107–120. https://doi.org/10.1007/s10980-012-9820-6 (2013).

    Article  Google Scholar 

  • 14.

    Walther-Hellwig, K. & Frankl, R. Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., apidae), in an agricultural landscape. J. Appl. Entomol. 124, 299–306. https://doi.org/10.1046/j.1439-0418.2000.00484.x (2000).

    Article  Google Scholar 

  • 15.

    Westphal, C., Steffan-Dewenter, I. & Tscharntke, T. Bumblebees experience landscapes at different spatial scales: Possible implications for coexistence. Oecologia 149, 289–300. https://doi.org/10.1007/s00442-006-0448-6 (2006).

    Article  ADS  PubMed  Google Scholar 

  • 16.

    Greenleaf, S. S., Williams, N. M., Winfree, R. & Kremen, C. Bee foraging ranges and their relationship to body size. Oecologia 153, 589–596. https://doi.org/10.1007/s00442-007-0752-9 (2007).

    Article  ADS  PubMed  Google Scholar 

  • 17.

    Hegland, S. J. & Totland, O. Relationships between species’ floral traits and pollinator visitation in a temperate grassland. Oecologia 145, 586–594. https://doi.org/10.1007/s00442-005-0165-6 (2005).

    Article  ADS  PubMed  Google Scholar 

  • 18.

    Hersch, E. I. & Roy, B. A. Context-dependent pollinator behavior: An explanation for patterns of hybridization among three species of indian paintbrush. Evolution 61, 111–124. https://doi.org/10.1111/j.1558-5646.2007.00009.x (2007).

    Article  PubMed  Google Scholar 

  • 19.

    Inouye, D. W. Resource partitioning in bumblebees—experimental studies of foraging behavior. Ecology 59, 672–678. https://doi.org/10.2307/1938769 (1978).

    Article  Google Scholar 

  • 20.

    Lazaro, A., Lene, A., Aase, A. & Totland, O. Relationships between densities of previous and simultaneous foragers and the foraging behaviour of three bumblebee species. Ecol. Entomol. 36, 221–230. https://doi.org/10.1111/j.1365-2311.2011.01263.x (2011).

    Article  Google Scholar 

  • 21.

    Lazaro, A. & Piazzon, M. Influence of number of flowers and number of previous and simultaneous foragers on bumblebees’ local foraging decisions. Acta Ethol. 18, 37–46. https://doi.org/10.1007/s10211-014-0180-x (2015).

    Article  Google Scholar 

  • 22.

    Spiesman, B. J. & Inouye, B. D. Habitat loss alters the architecture of plant–pollinator interaction networks. Ecology 94, 2688–2696 (2013).

    Article  PubMed  Google Scholar 

  • 23.

    Marrero, H. J., Torretta, J. P. & Medan, D. Effect of land use intensification on specialization in plant–floral visitor interaction networks in the Pampas of Argentina. Agric. Ecosyst. Environ. 188, 63–71. https://doi.org/10.1016/j.agee.2014.02.017 (2014).

    Article  Google Scholar 

  • 24.

    Revilla, T. A., Encinas-Viso, F. & Loreau, M. Robustness of mutualistic networks under phenological change and habitat destruction. Oikos 124, 22–32 (2015).

    Article  Google Scholar 

  • 25.

    Traveset, A., Castro-Urgal, R., Rotllàn-Puig, X. & Lázaro, A. Effects of habitat loss on the plant–flower visitor network structure of a dune community. Oikos 127, 45–55 (2018).

    Article  Google Scholar 

  • 26.

    Jauker, F., Jauker, B., Grass, I., Steffan-Dewenter, I. & Wolters, V. Partitioning wild bee and hoverfly contributions to plant–pollinator network structure in fragmented habitats. Ecology 100, e02569 (2019).

    Article  PubMed  Google Scholar 

  • 27.

    Bommarco, R. et al. Dispersal capacity and diet breadth modify the response of wild bees to habitat loss. Proc. R. Soc. B Biol. Sci. 277, 2075–2082 (2010).

    Article  Google Scholar 

  • 28.

    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).

    CAS  Article  ADS  PubMed  Google Scholar 

  • 29.

    Hagen, M. et al. Advances in Ecological Research, vol. 46 89–210 (Elsevier, New York, 2012).

    Google Scholar 

  • 30.

    Devoto, M., Bailey, S., Craze, P. & Memmott, J. Understanding and planning ecological restoration of plant–pollinator networks. Ecol. Lett. 15, 319–328. https://doi.org/10.1111/j.1461-0248.2012.01740.x (2012).

    Article  PubMed  Google Scholar 

  • 31.

    Weiner, C. N., Werner, M., Linsenmair, K. E. & Bluthgen, N. Land use intensity in grasslands: Changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl. Ecol. 12, 292–299. https://doi.org/10.1016/j.baae.2010.08.006 (2011).

    Article  Google Scholar 

  • 32.

    Burkle, L. A. & Knight, T. M. Shifts in pollinator composition and behavior cause slow interaction accumulation with area in plant–pollinator networks. Ecology 93, 2329–2335 (2012).

    Article  PubMed  Google Scholar 

  • 33.

    Carman, K. & Jenkins, D. G. Comparing diversity to flower–bee interaction networks reveals unsuccessful foraging of native bees in disturbed habitats. Biol. Conserv. 202, 110–118. https://doi.org/10.1016/j.biocon.2016.08.030 (2016).

    Article  Google Scholar 

  • 34.

    Fahrig, L. in Annual Review of Ecology, Evolution, and Systematics, Vol 48 Vol. 48 Annual Review of Ecology Evolution and Systematics (ed D. J. Futuyma) 1–23 (Annual Reviews, 2017).

  • 35.

    Goulson, D. & Sparrow, K. Evidence for competition between honeybees and bumblebees; effects on bumblebee worker size. J. Insect Conserv. 13, 177–181. https://doi.org/10.1007/s10841-008-9140-y (2009).

    Article  Google Scholar 

  • 36.

    Bowers, M. A. Experimental analyses of competition between two species of bumble bees (Hymenoptera: Apidae). Oecologia 67, 224–230 (1985).

    Article  ADS  PubMed  Google Scholar 

  • 37.

    Brian, A. D. Differences in the flowers visited by four species of bumble–bees and their causes. J. Anim. Ecol. 26, 71–98. https://doi.org/10.2307/1782 (1957).

    Article  Google Scholar 

  • 38.

    Walther-Hellwig, K. et al. Increased density of honeybee colonies affects foraging bumblebees. Apidologie 37, 517–532. https://doi.org/10.1051/apido:2006035 (2006).

    Article  Google Scholar 

  • 39.

    Fontaine, C., Collin, C. L. & Dajoz, I. Generalist foraging of pollinators: Diet expansion at high density. J. Ecol. 96, 1002–1010. https://doi.org/10.1111/j.1365-2745.2008.01405.x (2008).

    Article  Google Scholar 

  • 40.

    Herbertsson, L., Lindstrom, S. A. M., Rundlof, M., Bornmarco, R. & Smith, H. G. Competition between managed honeybees and wild bumblebees depends on landscape context. Basic Appl. Ecol. 17, 609–616. https://doi.org/10.1016/j.baae.2016.05.001 (2016).

    Article  Google Scholar 

  • 41.

    Kudo, G. Vulnerability of phenological synchrony between plants and pollinators in an alpine ecosystem. Ecol. Res. 29, 571–581. https://doi.org/10.1007/s11284-013-1108-z (2014).

    Article  Google Scholar 

  • 42.

    Persson, A. S. & Smith, H. G. Seasonal persistence of bumblebee populations is affected by landscape context. Agric. Ecosyst. Environ. 165, 201–209. https://doi.org/10.1016/j.agee.2012.12.008 (2013).

    Article  Google Scholar 

  • 43.

    Loken, A. Studies on Scandinavian bumble bees (Hymenoptera; Apidae). Norsk Entomol. Tidsskrift 20, 1–218 (1973).

    Google Scholar 

  • 44.

    Dramstad, W. & Fry, G. Foraging activity of bumblebees (Bombus) in relation to flower resources on arable land. Agric. Ecosyst. Environ. 53, 123–135. https://doi.org/10.1016/0167-8809(94)00561-r (1995).

    Article  Google Scholar 

  • 45.

    Aizen, M. A. & Feinsinger, P. Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina. Ecology 75, 330–351. https://doi.org/10.2307/1939538 (1994).

    Article  Google Scholar 

  • 46.

    Steffan-Dewenter, I. & Tscharntke, T. Effects of habitat isolation on pollinator communities and seed set. Oecologia 121, 432–440. https://doi.org/10.1007/s004420050949 (1999).

    CAS  Article  ADS  PubMed  Google Scholar 

  • 47.

    Farwig, N. et al. Isolation from forest reduces pollination, seed predation and insect scavenging in Swiss farmland. Landsc. Ecol. 24, 919–927. https://doi.org/10.1007/s10980-009-9376-2 (2009).

    Article  Google Scholar 

  • 48.

    Ricketts, T. H. et al. Landscape effects on crop pollination services: Are there general patterns?. Ecol. Lett. 11, 499–515. https://doi.org/10.1111/j.1461-0248.2008.01157.x (2008).

    Article  PubMed  Google Scholar 

  • 49.

    Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14, 1062–1072. https://doi.org/10.1111/j.1461-0248.2011.01669.x (2011).

    Article  PubMed  Google Scholar 

  • 50.

    Saville, N. M., Dramstad, W. E., Fry, G. L. A. & Corbet, S. A. Bumblebee movement in a fragmented agricultural landscape. Agric. Ecosyst. Environ. 61, 145–154. https://doi.org/10.1016/s0167-8809(96)01100-0 (1997).

    Article  Google Scholar 

  • 51.

    Osborne, J. L. et al. Bumblebee flight distances in relation to the forage landscape. J. Anim. Ecol. 77, 406–415. https://doi.org/10.1111/j.1365-2656.2007.01333.x (2008).

    Article  PubMed  Google Scholar 

  • 52.

    Hagen, M., Wikelski, M. & Kissling, W. D. Space use of bumblebees (Bombus spp.) revealed by radio-tracking. PLoS One 6, 10. https://doi.org/10.1371/journal.pone.0019997 (2011).

    CAS  Article  Google Scholar 

  • 53.

    Goverde, M., Schweizer, K., Baur, B. & Erhardt, A. Small-scale habitat fragmentation effects on pollinator behaviour: Experimental evidence from the bumblebee Bombus veteranus on calcareous grasslands. Biol. Cons. 104, 293–299 (2002).

    Article  Google Scholar 

  • 54.

    Ockinger, E. & Smith, H. G. Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes. J. Appl. Ecol. 44, 50–59. https://doi.org/10.1111/j.1365-2664.2006.01250.x (2007).

    Article  Google Scholar 

  • 55.

    Crowther, L. The Tree Bumblebee, bombus hypnorum: Ecology and Genetics of a Naturally Colonising Pollinator (University of East Anglia, East Anglia, 2017).

    Google Scholar 

  • 56.

    Knight, M. E. et al. An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol. Ecol. 14, 1811–1820. https://doi.org/10.1111/j.1365-294X.2005.02540.x (2005).

    CAS  Article  PubMed  Google Scholar 

  • 57.

    Goulson, D. Bumblebees: Behaviour, Ecology, and Conservation (Oxford University Press, Oxford, 2010).

    Google Scholar 

  • 58.

    Hegland, S. J. & Boeke, L. Relationships between the density and diversity of floral resources and flower visitor activity in a temperate grassland community. Ecol. Entomol. 31, 532–538. https://doi.org/10.1111/j.1365-2311.2006.00812.x (2006).

    Article  Google Scholar 

  • 59.

    Diekotter, T., Kadoya, T., Peter, F., Wolters, V. & Jauker, F. Oilseed rape crops distort plant–pollinator interactions. J. Appl. Ecol. 47, 209–214. https://doi.org/10.1111/j.1365-2664.2009.01759.x (2010).

    Article  Google Scholar 

  • 60.

    Huntley, B. Species-richness in north-temperate zone forests. J. Biogeogr. 20, 163–180. https://doi.org/10.2307/2845669 (1993).

    Article  Google Scholar 

  • 61.

    Williams, P. H. The bumble bees of the Kashmir Himalaya (Hymenoptera: Apidae, Bombini). Bull. Brit. Museum (Nat. Hist.) Entomol. 60, 1–204 (1991).

    Google Scholar 

  • 62.

    Anasiewicz, A. Observations on the bumble-bees in Lublin. Ekol. Polska 19, 401–417 (1971).

    Google Scholar 

  • 63.

    Cueva del Castillo, R., Sanabria-Urbán, S. & Serrano-Meneses, M. A. Trade-offs in the evolution of bumblebee colony and body size: A comparative analysis. Ecol. Evol. 5, 3914–3926 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 64.

    Sladen, F. The Humble-Bee, Its Life History and How to Domesticate It 283 (Mac Millan, London, 1912).

    Google Scholar 

  • 65.

    Peat, J., Darvill, B., Ellis, J. & Goulson, D. Effects of climate on intra- and interspecific size variation in bumble–bees. Funct. Ecol. 19, 145–151. https://doi.org/10.1111/j.0269-8463.2005.00946.x (2005).

    Article  Google Scholar 

  • 66.

    Kells, A. R. & Goulson, D. Preferred nesting sites of bumblebee queens (Hymenoptera: Apidae) in agroecosystems in the UK. Biol. Conserv. 109, 165–174. https://doi.org/10.1016/s0006-3207(02)00131-3 (2003).

    Article  Google Scholar 

  • 67.

    Darvill, B., Knight, M. E. & Goulson, D. Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 107, 471–478 (2004).

    Article  Google Scholar 

  • 68.

    Goulson, D., Lye, G. C. & Darvill, B. Diet breadth, coexistence and rarity in bumblebees. Biodivers. Conserv. 17, 3269–3288. https://doi.org/10.1007/s10531-008-9428-y (2008).

    Article  Google Scholar 

  • 69.

    Brittain, C. A., Vighi, M., Bommarco, R., Settele, J. & Potts, S. G. Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl. Ecol. 11, 106–115. https://doi.org/10.1016/j.baae.2009.11.007 (2010).

    CAS  Article  Google Scholar 

  • 70.

    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39. https://doi.org/10.1126/science.185.4145.27 (1974).

    CAS  Article  ADS  PubMed  Google Scholar 

  • 71.

    Heinrich, B. Resource partitioning among some eusocial insects—bumblebees. Ecology 57, 874–889. https://doi.org/10.2307/1941054 (1976).

    Article  Google Scholar 

  • 72.

    Ewers, R. M. & Didham, R. K. The effect of fragment shape and species’ sensitivity to habitat edges on animal population size. Conserv. Biol. 21, 926–936. https://doi.org/10.1111/j.1523-1739.2007.00720.x (2007).

    Article  PubMed  Google Scholar 

  • 73.

    Gonzalez, E., Salvo, A., Defago, M. T. & Valladares, G. A moveable feast: insects moving at the forest-crop interface are affected by crop phenology and the amount of forest in the landscape. PLoS One 11, 19. https://doi.org/10.1371/journal.pone.0158836 (2016).

    CAS  Article  Google Scholar 

  • 74.

    Miller-Struttmann, N. E. et al. Functional mismatch in a bumble bee pollination mutualism under climate change. Science 349, 1541–1544 (2015).

    CAS  Article  ADS  PubMed  Google Scholar 

  • 75.

    Dupont, Y. L., Padron, B., Olesen, J. M. & Petanidou, T. Spatio-temporal variation in the structure of pollination networks. Oikos 118, 1261–1269. https://doi.org/10.1111/j.1600-0706.2009.17594.x (2009).

    Article  Google Scholar 

  • 76.

    Petanidou, T., Kallimanis, A. S., Tzanopoulos, J., Sgardelis, S. P. & Pantis, J. D. Long-term observation of a pollination network: Fluctuation in species and interactions, relative invariance of network structure and implications for estimates of specialization. Ecol. Lett. 11, 564–575. https://doi.org/10.1111/j.1461-0248.2008.01170.x (2008).

    Article  PubMed  Google Scholar 

  • 77.

    Goulson, D. & Darvill, B. Niche overlap and diet breadth in bumblebees; are rare species more specialized in their choice of flowers?. Apidologie 35, 55–63. https://doi.org/10.1051/apido:2003062 (2004).

    Article  Google Scholar 

  • 78.

    Rodríguez-Gironés, M. A. & Santamaría, L. Models of optimal foraging and resource partitioning: Deep corollas for long tongues. Behav. Ecol. 17, 905–910 (2006).

    Article  Google Scholar 

  • 79.

    Carvalheiro, L. G. et al. The potential for indirect effects between co-flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecol. Lett. 17, 1389–1399. https://doi.org/10.1111/ele.12342 (2014).

    Article  PubMed  Google Scholar 

  • 80.

    Statens kartverk Geovekst og kommunene. Norge I Bilder. https://www.norgeibilder.no/ (2007).

  • 81.

    ESRI. ArcGIS Desktop Release 10.5 (Environmental Systems Research Institute, Redlands, 2016).

    Google Scholar 

  • 82.

    Norwegian Mapping Authority. SOSI Standard—Generell Objektkatalog Versjon 40 (Markslag, Fagområde, 2006).

    Google Scholar 

  • 83.

    Carolan, J. C. et al. Colour patterns do not diagnose species: Quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS One 7, 10. https://doi.org/10.1371/journal.pone.0029251 (2012).

    CAS  Article  PubMed Central  Google Scholar 

  • 84.

    Ballantyne, G., Baldock, K. C. R. & Willmer, P. G. Constructing more informative plant–pollinator networks: visitation and pollen deposition networks in a heathland plant community. Proc. R. Soc. B-Biol. Sci. 282, 14–22. https://doi.org/10.1098/rspb.2015.1130 (2015).

    Article  Google Scholar 

  • 85.

    Lid, J. & Lid, D. T. J. O. Norsk flora–Det Norske Samlaget (1994).

  • 86.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).

    Article  Google Scholar 

  • 87.

    Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: Analysing ecological networks. R news 8(2), 8–11 (2008).

    Google Scholar 

  • 88.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).

  • 89.

    Bluthgen, N., Menzel, F. & Bluthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9. https://doi.org/10.1186/1472-6785-6-9 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • 90.

    Muller, C. B., Adriaanse, I. C. T., Belshaw, R. & Godfray, H. C. J. The structure of an aphid-parasitoid community. J. Anim. Ecol. 68, 346–370. https://doi.org/10.1046/j.1365-2656.1999.00288.x (1999).

    Article  Google Scholar 

  • 91.

    Frost, C. M. et al. Apparent competition drives community-wide parasitism rates and changes in host abundance across ecosystem boundaries. Nat. Commun. 7, 1–12 (2016).

    Google Scholar 

  • 92.

    Bergamo, P. J. et al. The potential indirect effects among plants via shared hummingbird pollinators are structured by phenotypic similarity. Ecology 98, 1849–1858. https://doi.org/10.1002/ecy.1859 (2017).

    Article  PubMed  Google Scholar 

  • 93.

    Magrach, A., González-Varo, J. P., Boiffier, M., Vilà, M. & Bartomeus, I. Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nat. Ecol. Evol. 1, 1299–1307 (2017).

    Article  PubMed  Google Scholar 

  • 94.

    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  • 95.

    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, Berlin, 2009).

    Google Scholar 

  • 96.

    Gross, J. & Ligges, U. nortest: Tests for Normality. R package version 1.0-4. https://CRAN.R-project.org/package=nortest (2015). 

  • 97.

    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2019).

  • 98.

    Leps, J., Smilauer, P., Leps, J. & Smilauer, P. Multivariate Analysis of Ecological Data Using CANOCO (Cambridge University Press, Cambridge, 2003).

    Google Scholar 


  • Source: Ecology - nature.com

    D-Lab moves online, without compromising on impact

    Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle