in

Multiple drivers of Miocene C4 ecosystem expansions

  • 1.

    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    Article  Google Scholar 

  • 2.

    Tipple, B. & Pagani, M. The early origins of terrestrial C4 photosynthesis. Annu. Rev. Earth Planet. Sci. 35, 435–461 (2007).

    Article  Google Scholar 

  • 3.

    Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & deMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).

    Article  Google Scholar 

  • 4.

    Bush, R. T. & McInerney, F. A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy. Geochim. Cosmochim. Acta 117, 161–179 (2013).

    Article  Google Scholar 

  • 5.

    Diefendorf, A. F. & Freimuth, E. J. Extracting the most from terrestrial plant-derived n-alkyl lipids and their carbon isotopes from the sedimentary record: a review. Org. Geochem. 103, 1–21 (2017).

    Article  Google Scholar 

  • 6.

    Garcin, Y. et al. Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa. Geochim. Cosmochim. Acta 142, 482–500 (2014).

    Article  Google Scholar 

  • 7.

    Sinninghe Damste, J. S., Kuypers, M. M. M., Schouten, S., Schulte, S. & Rullkötter, J. The lycopane/C31n-alkane ratio as a proxy to assess palaeoxicity during sediment deposition. Earth Planet. Sci. Lett. 209, 215–226 (2003).

    Article  Google Scholar 

  • 8.

    Wakeham, S. G., Freeman, K. H., Pease, T. K. & Hayes, J. M. A photoautotrophic source for lycopane in marine water columns. Geochim. Cosmochim. Acta 57, 159–165 (1993).

    Article  Google Scholar 

  • 9.

    Dupont, L. M., Rommerskirchen, F., Mollenhauer, G. & Schefuß, E. Miocene to Pliocene changes in South African hydrology and vegetation in relation to the expansion of C4 plants. Earth Planet. Sci. Lett. 375, 408–417 (2013).

    Article  Google Scholar 

  • 10.

    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).

    Article  Google Scholar 

  • 11.

    Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).

    Article  Google Scholar 

  • 12.

    Morley, R. J. & Richards, K. Gramineae cuticle—a key indicator of late cenozoic climatic-change in the Niger Delta. Rev. Palaeobot. Palynol. 77, 119–127 (1993).

    Article  Google Scholar 

  • 13.

    Edwards, E. J., Osborne, C. P., Stromberg, C. A. E. & Smith, S. A. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).

    Article  Google Scholar 

  • 14.

    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    Article  Google Scholar 

  • 15.

    Beerling, D. J. & Royer, D. L. Convergent cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    D-Lab moves online, without compromising on impact

    Coronavirus disease 2019 (COVID-19) outbreak: some serious consequences with urban and rural water cycle