in

Global patterns of parasite diversity in cephalopods

  • 1.

    Boyle, P. & Rodhouse, P. Cephalopods: ecology and fisheries (Wiley, Hoboken, 2008).

    Google Scholar 

  • 2.

    Iglesias, J., Fuentes, L. & Villanueva, R. Cephalopod culture (Springer, Dordrecht, 2014).

    Google Scholar 

  • 3.

    Huffard, C. L. Cephalopod neurobiology: an introduction for biologists working in other model systems. Invertebr. Neurosci. 13, 11–18 (2013).

    Google Scholar 

  • 4.

    Marini, G., De Sio, F., Ponte, G. & Fiorito, G. Behavioral analysis of learning and memory in cephalopods. In Learning and memory: a comprehensive reference 2nd edn (ed. Byrne, J. H.) 441–462 (Academic Press, Amsterdam, 2017).

    Google Scholar 

  • 5.

    Moltschaniwskyj, N. A. et al. Ethical and welfare considerations when using cephalopods as experimental animals. Rev. Fish Biol. Fish. 17, 455–476 (2007).

    Google Scholar 

  • 6.

    Xavier, J. C. et al. Future challenges in cephalopod research. J. Mar. Biol. Assoc. UK 95, 999–1015 (2015).

    Google Scholar 

  • 7.

    Clarke, M. R. The role of cephalopods in the world’s oceans: an introduction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 979–983 (1996).

    ADS  Google Scholar 

  • 8.

    Gestal, C., Abollo, E. & Pascual, S. Observations on associated histopathology with Aggregata octopiana infection (Protista: Apicomplexa) in Octopus vulgaris. Dis. Aquat. Org. 50, 45–49 (2002).

    CAS  PubMed  Google Scholar 

  • 9.

    Tedesco, P. et al. Morphological and molecular characterization of Aggregata spp. Frenzel 1885 (Apicomplexa: Aggregatidae) in Octopus vulgaris Cuvier 1797 (Mollusca: Cephalopoda) from Central Mediterranean. Protist 168, 636–648 (2017).

    PubMed  Google Scholar 

  • 10.

    Giribet, G. & Edgecombe, G. D. The invertebrate tree of life (Princeton University Press, Princeton, 2020).

    Google Scholar 

  • 11.

    Hochberg, F. G. Diseases of Mollusca Cephalopoda—diseases caused by protistans and metazoans. In Diseases of marine animals Vol. III (ed. Kinne, O.) 47–202 (Biologische Anstalt Helgoland, Hamburg, 1990).

    Google Scholar 

  • 12.

    Humes, A. G. & Voight, J. R. Cholidya polypi (Copepoda: Harpacticoida: Tisbidae), a parasite of deep sea octopuses in the north Atlantic and northeastern Pacific. Ophelia 46, 65–81 (1997).

    Google Scholar 

  • 13.

    Combes, C. Parasitism: the ecology and evolution of intimate interactions (University of Chicago Press, Chicago, 2001).

    Google Scholar 

  • 14.

    Lindenfors, P. et al. Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Glob. Ecol. Biogeogr. 1, 1–14 (2007).

    Google Scholar 

  • 15.

    Kuhn, T., Cunze, S., Kochmann, J. & Klimpel, S. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm. Sci. Rep. 6, 30246. https://doi.org/10.1038/srep30246 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Pascual, S., González, A. F. & Guerra, A. The recruitment of gill-infesting copepods as a categorical predictor of size-at-age data in squid populations. ICES J. Mar. Sci. 62, 629–633 (2005).

    Google Scholar 

  • 17.

    González, A. F., Pascual, S., Gestal, C., Abollo, E. & Guerra, A. What makes a cephalopod a suitable host for parasite? The case of Galician waters. Fish. Res. 60, 177–183 (2003).

    Google Scholar 

  • 18.

    Bower, J. R. & Miyahara, K. The diamond squid (Thysanoteuthis rhombus): a review of the fishery and recent research in Japan. Fish. Res. 73, 1–11 (2005).

    Google Scholar 

  • 19.

    Klimpel, S. & Palm, H. W. Anisakid nematode (Ascaridoidea) life cycles and distribution: increasing zoonotic potential in the time of climate change? In Progress in parasitology (ed. Mehlhorn, H.) 201–222 (Springer, Berlin, 2011).

    Google Scholar 

  • 20.

    Lafferty, K. D. & Kuris, A. M. How environmental stress affects the impact of parasites. Limnol. Oceanogr. 44, 925–931 (1999).

    ADS  Google Scholar 

  • 21.

    Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and anisakiasis: an ecological and evolutionary road map. Adv. Parasitol. 99, 93–263 (2018).

    PubMed  Google Scholar 

  • 22.

    Poulin, R. & Leung, T. L. F. Taxonomic resolution in parasite community studies: are things getting worse?. Parasitology 137, 1967–1973 (2010).

    CAS  PubMed  Google Scholar 

  • 23.

    Bartoli, P., Jousson, O. & Russell-Pinto, F. The life cycle of Monorchis parvus (Digenea: Monorchiidae) demonstrated by developmental and molecular data. J. Parasitol. 86, 479–489 (2000).

    CAS  PubMed  Google Scholar 

  • 24.

    Caira, J. N. Synergy advances parasite taxonomy and systematics: an example from elasmobranch tapeworms. Parasitology 138, 1675–1687 (2011).

    PubMed  Google Scholar 

  • 25.

    Mattiucci, S. et al. Genetic and morphological approaches distinguish the three sibling species of the Anisakis simplex species complex, with a species designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae). J. Parasitol. 100, 199–215 (2014).

    CAS  PubMed  Google Scholar 

  • 26.

    Roumbedakis, K., Drábková, M., Tyml, T. & di Cristo, C. A perspective around cephalopods and their parasites, and suggestions on how to increase knowledge in the field. Front. Physiol. 9, 1573. https://doi.org/10.3389/fphys.2018.01573 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Redi, F. Osservazioni di Francesco Redi academico della Crusca intorno agli animali viventi che si trovano negli animali viventi (Firenze, 1684).

  • 28.

    Lopez-Gonzalez, P. J. et al. Description of Genesis vulcanoctopusi gen. et sp. nov. (Copepoda: Tisbidae) parasitic on a hydrothermal vent octopod and a reinterpretation of the life cycle of cholidyinid harpacticoids. Cah. Biol. Mar. 41, 241–253 (2000).

    Google Scholar 

  • 29.

    Avdeev, G. V. Amplipedicola pectinatus gen. et sp. n. (Copepoda, Harpacticoida, Tisbidae), a parasite of octopuses in the Bering Sea. Crustaceana 83, 1363–1370 (2010).

    Google Scholar 

  • 30.

    Ho, J. S. & Kim, I. H. New species of Doridicola (Copepoda, Rhynchomolgidae) from Thailand, with a cladistic analysis of the genus. J. Crustacean Biol. 21, 78–89 (2001).

    Google Scholar 

  • 31.

    Mehrdana, F. et al. Occurrence of zoonotic nematodes Pseudoterranova decipiens, Contracaecum osculatum and Anisakis simplex in cod (Gadus morhua) from the Baltic Sea. Vet. Parasitol. 205, 581–587 (2014).

    PubMed  Google Scholar 

  • 32.

    Ghadam, M., Banaii, M., Mohammed, E. T., Suthar, J. & Shamsi, S. Morphological and molecular characterization of selected species of Hysterothylacium (Nematoda: Raphidascarididae) from marine fish in Iraqi waters. J. Helminthol. 92, 116–124 (2018).

    CAS  PubMed  Google Scholar 

  • 33.

    Rosa, R. et al. Global patterns of species richness in coastal cephalopods. Front. Mar. Sci. 6, 469 (2019).

    Google Scholar 

  • 34.

    Furuya, H. & Tsuneki, K. Biology of dicyemid mesozoans. Zool. Sci. 20, 519–533 (2003).

    PubMed  Google Scholar 

  • 35.

    Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Dicyemid fauna composition and infection patterns in relation to cephalopod host biology and ecology. Folia Parasitol. 61, 301–310 (2014).

    PubMed  Google Scholar 

  • 36.

    Bender, M. G. et al. Isolation drives taxonomic and functional nestedness in tropical reef fish faunas. Ecography 40, 425–435 (2017).

    Google Scholar 

  • 37.

    Bevilacqua, S. & Terlizzi, A. Nestedness and turnover unveil inverse spatial patterns of compositional and functional β-diversity at varying depth in marine benthos. Divers. Distrib. https://doi.org/10.1111/ddi.13025 (2020) ((in press)).

    Article  Google Scholar 

  • 38.

    Poulin, R., Besson, A., Bélanger Morin, M. & Randhawa, H. S. Missing links: testing the completeness of host-parasite checklists. Parasitology 143, 114–122 (2016).

    PubMed  Google Scholar 

  • 39.

    Poulin, R. How many parasite species are there: are we close to answers?. Int. J. Parasitol. 26, 1127–1129 (1996).

    CAS  PubMed  Google Scholar 

  • 40.

    Smith, J. A. et al. Cephalopod research and EU Directive 2010/63/EU: requirements, impacts and ethical review. J. Exp. Mar. Biol. Ecol. 447, 31–45 (2013).

    Google Scholar 

  • 41.

    Walther, B. A., Cotgreave, P., Price, R. D., Gregory, R. D. & Clayton, D. H. Sampling effort and parasite species richness. Parasitol. Today 11, 306–310 (1995).

    CAS  PubMed  Google Scholar 

  • 42.

    Drábková, M. et al. Population co-divergence in common cuttlefish (Sepia officinalis) and its dicyemid parasite in the Mediterranean Sea. Sci. Rep. 9, 14300. https://doi.org/10.1038/s41598-019-50555-92019 (2019).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 43.

    Jereb, P., Vecchione, M. & Roper, C. F. E. Family Loliginidae. In Cephalopods of the world. An annotated and illustrated catalogue of species known to date. Myopsid and Oegopsid squids, no. 4 Vol. 2 (eds Jereb, P. & Roper, C. F. E.) 38–117 (FAO Species Catalogue for Fishery Purposes, FAO, Rome, 2010).

    Google Scholar 

  • 44.

    Roper, C. F. E., Nigmatullin, C. & Jereb, P. Family Ommastrephidae. In Cephalopods of the world. An annotated and illustrated catalogue of species known to date. Myopsid and Oegopsid squids, no. 4 Vol. 2 (eds Jereb, P. & Roper, C. F. E.) 269–347 (FAO Species Catalogue for Fishery Purposes, FAO, Rome, 2010).

    Google Scholar 

  • 45.

    Bordes, F., Morand, S., Kelt, D. A. & Van Vuren, D. H. Home range and parasite diversity in mammals. Am. Nat. 173, 467–474 (2009).

    PubMed  Google Scholar 

  • 46.

    Feliu, C. et al. A comparative analysis of parasite species richness of Iberian rodents. Parasitology 115, 453–466 (1997).

    PubMed  Google Scholar 

  • 47.

    Nunn, C. L., Altizer, S., Jones, K. E. & Sechrest, W. Comparative tests of parasite species richness in primates. Am. Nat. 162, 597–614 (2003).

    PubMed  Google Scholar 

  • 48.

    Ambrose, R. F. & Nelson, B. V. Predation by Octopus vulgaris in the Mediterranean. Mar. Ecol. 4, 251–261 (1983).

    ADS  Google Scholar 

  • 49.

    Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Using the giant Australian cuttlefish (Sepia apama) mass breeding aggregation to explore the life cycle of dicyemid parasites. Acta Parasitol. 58, 599–602 (2013).

    PubMed  Google Scholar 

  • 50.

    Furuya, H. & Souidenne, D. Dicyemids. In Handbook of pathogens and diseases in cephalopods (eds Gestal, C. et al.) 159–168 (Springer, Cham, 2019).

    Google Scholar 

  • 51.

    Ruhnke, T. R. Tapeworms of Elasmobranchs (Part III). A monograph on the Phyllobothriidae (Platyhelminthes, Cestoda). Bull. Univ. Nebr. State Mus. 25, 1–208 (2011).

    Google Scholar 

  • 52.

    Randhawa, H. S. & Poulin, R. Tapeworm discovery in elasmobranch fishes: quantifying patterns and identifying their correlates. Mar. Freshw. Res. 71, 78–88 (2020).

    Google Scholar 

  • 53.

    Cake, E. W. A key to larval cestodes of shallow-water, benthic mollusks of the northern Gulf of Mexico. Proc. Helminthol. Soc. Wash. 43, 160–171 (1976).

    Google Scholar 

  • 54.

    Agusti, C. et al. Morphological and molecular characterization of tetraphyllidean merocercoids (Platyhelminthes: Cestoda) of striped dolphins (Stenella coeruleoalba) from the western Mediterranean. Parasitology 130, 461–474 (2005).

    CAS  PubMed  Google Scholar 

  • 55.

    Jensen, K. & Bullard, S. A. Characterization of a diversity of tetraphyllidean and rhinebothriidean cestode larval types, with comments on host associations and life cycles. Int. J. Parasitol. 40, 889–910 (2010).

    CAS  PubMed  Google Scholar 

  • 56.

    Mills, K. E. & Bever, J. D. Maintenance of diversity within plant communities: soil pathogens as agents of negative feedback. Ecology 79, 1595–1601 (1998).

    Google Scholar 

  • 57.

    Lafferty, K. D. et al. Parasites in food webs: the ultimate missing links. Ecol. Lett. 11, 533–546 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Johnson, P. T. et al. When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol. Evol. 25, 362–371 (2010).

    PubMed  Google Scholar 

  • 59.

    Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).

    Google Scholar 

  • 60.

    Clarke, K. R. & Warwick, R. M. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar. Ecol. Prog. Ser. 216, 265–278 (2001).

    ADS  Google Scholar 

  • 61.

    Anu, A. & Sabu, T. K. Biodiversity analysis of forest litter ant assemblages in the Wayanad region of Western Ghats using taxonomic and conventional diversity measures. J. Insect Sci. 7, 06. https://doi.org/10.1673/031.007.0601 (2007).

    Article  Google Scholar 

  • 62.

    Bevilacqua, S., Fraschetti, S., Musco, L., Guarnieri, G. & Terlizzi, A. Low sensitiveness of taxonomic distinctness indices to human impacts: evidences across marine benthic organisms and habitat types. Ecol. Indic. 11, 448–455 (2011).

    Google Scholar 

  • 63.

    Guo, C. & Xu, H. Use of functional distinctness of periphytic ciliates for monitoring water quality in coastal ecosystems. Ecol. Indic. 96, 213–218 (2019).

    CAS  Google Scholar 

  • 64.

    Luque, J. L., Mouillot, D. & Poulin, R. Parasite biodiversity and its determinants in coastal marine teleost fishes of Brazil. Parasitology 128, 671–682 (2004).

    CAS  PubMed  Google Scholar 

  • 65.

    Quiroz-Martínez, B. & Salgado-Maldonado, G. Taxonomic distinctness and richness of helminth parasite assemblages of freshwater fishes in Mexican hydrological basins. PLoS ONE 8, e74419. https://doi.org/10.1371/journal.pone.0074419 (2013).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Leonard, D. R. P., Clarke, K. R., Somerfield, P. J. & Warwick, R. M. The application of an indicator based on taxonomic distinctness for UK marine biodiversity assessments. J. Environ. Manag. 78, 52–62 (2006).

    CAS  Google Scholar 

  • 67.

    Bevilacqua, S., Sandulli, R., Plicanti, A. & Terlizzi, A. Taxonomic distinctness in Mediterranean marine nematodes and its relevance for environmental impact assessment. Mar. Pollut. Bull. 64, 1409–1416 (2012).

    CAS  PubMed  Google Scholar 

  • 68.

    Price, A. R. G., Vincent, L. P. A., Venkatachalam, A. J., Bolton, J. J. & Basson, P. W. Concordance between different measures of biodiversity in Indian Ocean macroalgae. Mar. Ecol. Prog. Ser. 319, 85–91 (2006).

    ADS  Google Scholar 

  • 69.

    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).

    Google Scholar 

  • 70.

    Clarke, K. R. & Warwick, R. M. The taxonomic distinctness measure of biodiversity: weighting of step lengths between hierarchical levels. Mar. Ecol. Prog. Ser. 184, 21–29 (1999).

    ADS  Google Scholar 

  • 71.

    Baselga, A. The relationship between species replacement, dissimilarity derived from turnover, and nestedness. Glob. Ecol. Biogeogr. 21, 1223–1232 (2012).

    Google Scholar 

  • 72.

    Jereb, P. & Roper, C. F. E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 1. Chambered Nautiluses and Sepioids (Nautilidae, Sepiidae, Sepiadariidae, Idiosepiidae and Spirulidae) (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 1, Rome, FAO, 2005).

  • 73.

    Jereb, P. & Roper, C. F. E. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 2. Myopsid and Oegopsid Squids (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 2, Rome, FAO, 2010).

  • 74.

    Jereb, P., Roper, C. F. E., Norman, M.D. & Julian, K. F. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 3. Octopods and Vampire Squids (FAO Species Catalogue for Fishery Purposes, No. 4, Vol. 3, Rome, FAO 2014).

  • 75.

    Cephbase (2018). https://cephbase.eol.org/. Accessed December 2018.

  • 76.

    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J. Plant Ecol. 5, 3–21 (2012).

    Google Scholar 

  • 77.

    Clarke, K. R. & Gorley, R. N. PRIMER v6: user manual/tutorial (PRIMER-E, Plymouth, 2006).

    Google Scholar 

  • 78.

    R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).

  • 79.

    Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812 (2012).

    Google Scholar 

  • 80.

    Colwell R. K. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9 and earlier. User’s guide and application. https://viceroy.colorado.edu/estimates (2013).


  • Source: Ecology - nature.com

    Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history

    A new approach to carbon capture